วันพฤหัสบดีที่ 27 พฤศจิกายน พ.ศ. 2551

ไมโครโพรเซสเซอร์

ไมโครโพรเซสเซอร์ (อังกฤษ: Microprocessor) หมายถึง ชิป (Chip) ที่ใช้ในหน่วยประมวลผลกลางของเครื่องไมโครคอมพิวเตอร์ เราสามารถแบ่งไมโครโพรเซสเซอร์ตามสถาปัตยกรรมได้เป็น 2 ชนิด คือ RISC (Reduced Instruction Set Computer) คือ ไมโครโพรเซสเซอร์ที่มีคำสั่งน้อย แต่คำสั่งทำงานได้เร็ว เริ่มต้นพัฒนาด้วยความร่วมมือของ ไอบีเอ็ม, มหาวิทยาลัยแสตนฟอร์ด และ มหาวิทยาลัยแคลิฟอร์เนียที่เบอร์คเลย์ ในยุคคริสต์ทศวรรษ 1970 ไมโครโพรเซสเซอร์ที่ได้ คือ IBM 801, Stanford MIPS และ Berkeley RISC 1 และ 2 ไมโครโพรเซสเซอร์ชนิดนี้ในยุคต่อมาได้แก่ SPARC ของ ซัน ไมโครซิสเต็มส์ และ PowerPC ของ โมโตโรล่า
  1. CISC (Complex Instruction Set Computer) เป็นสถาป้ตยกรรมของไมโครโพรเซสเซอร์ที่มีคำสั่งมากกว่าและซับซ้อนกว่า ได้แก่ ไมโครโพรเซสเซอร์ x86, Pentium และ Celeron ของ Intel และ ไมโครโพรเซสเซอร์จากบริษัทเอเอ็มดี (AMD)

ไมโครโพรเซสเซอร์ที่รู้จักกันดีก็ได้แก่ ยี่ห้อ Motorola 68030, 68040 ที่ใช้กับเครื่องแมคอินทอชรุ่นเก่าของบริษัทแอปเปิล ส่วนที่ใช้กับเครื่องพีซี ได้แก่ Intel i486, Intel Pentium, Intel Celeron, AMD Athlon, AMD Sempron เป็นต้น

โครงสร้าง แบบ RISC มีการทำงานที่เร็วกว่า CISC มาก โดยมากแล้วจะใช้ เพียง 1-2 machine cycle เท่านั้น ในอนาคตมีแนวโน้นที่จะเป็นไปใช้แบบ RISC แต่ ที่ยังใช้โครงสร้างแบบ CISC อยู่นั้นเพราะ ว่าถ้าเปลี่ยนเป็นแบบ RISC แล้ว โปรแกรมที่มีอยู่เดิมจะใช้งานไม่ได้ทันที หรือ ต้องการใช้ก็ต้องเป็นการจำลองการทำงานบนโครงสร้างที่ต่างออกไป ทำให้ประสิทธิลดต่ำลง ในจาก Microprocessor แล้วยังมีอุปกรณ์อีกชนิดหนึ่ง คือ Microcontroller ซึ่ง Microcontroller ก็คือ Microprocessor ที่รวมอุปกรณ์อื่นๆเข้าไปด้วย เช่น หน่วยความจำ(RAM), DMA, UART, Watch Dog, RTC, USB, I/O, etc. กล่าวคือเราสามารถนำ Microcontroller ไปใช้งานโดยต่ออุปกรณ์ภายนอกเพียงเล็กเท่านั้น ซึ่งต่างจาก Microcontroller ที่ต้องต่ออุปกรณ์อื่นเป็นจำนวนมาก Microcontroller มีมากมายหลายตระกูล เช่น แบบCISC มี MCS-51, 68HCxx, Z80, เป็นต้น แบบ RISC มี PIC, AVR, ARM เป็นต้น โดยเฉพาะในตระกูล ARM มาแรงมากในปัจจุบัน เนื่องจากมี โครงสร้างแบบ RISC 16/32 bit,64 bit มีผู้ผลิตมากมายหลายเจ้า ARM ยังนิยมนำไปใช้ ใน อุปกรณ์มือถือระดับสูง เครื่องคอมพิวเตอร์พกพา(PDA) มี OS รองรับหลายรุ่น เช่น Windwos CE เป็นต้น

รอม

รอม (ROM: Read-only Memory หน่วยความจำอ่านอย่างเดียว) เป็นหน่วยความจำแบบสารกึ่งตัวนำชั่วคราวชนิดอ่านได้อย่างเดียว ใช้เป็นสื่อบันทึกในคอมพิวเตอร์ เพราะไม่สามารถบันทึกซ้ำได้ (อย่างง่ายๆ) เป็นหน่วยความจำที่มีซอฟต์แวร์หรือข้อมูลอยู่แล้ว และพร้อมที่จะนำมาต่อกับไมโครโพรเซสเซอร์ได้ โดยตรง หน่วยความจำประเภทนี้แม้ไม่มีไฟเลี้ยงต่ออยู่ ข้อมูลก็จะไม่หายไปจากหน่วยความจำ (nonvolatile) โดยทั่วไปจะใช้เก็บข้อมูลที่ไม่ต้องมีการแก้ไขอีกแล้วเช่น
  • เก็บโปรแกรมไบออส (Basic Input output System : BIOS) หรือเฟิร์มแวร์ ที่ควบคุมการทำงานของคอมพิวเตอร์
  • ใช้เก็บโปรแกรมการทำงานสำหรับเครื่องคิดเลข
  • ใช้เก็บโปรแกรมของคอมพิวเตอร์ที่ทำงานเฉพาะด้าน เช่น ในรถยนต์ที่ใช้ระบบคอมพิวเตอร์ควบคุมวงจร ควบคุมในเครื่องซักผ้า เป็นต้น
หน่วยความจำประเภท ROM นี้ยังแบ่งออกเป็นประเภทย่อยๆ ตามลักษณะการใช้งานได้หลายประเภท สำหรับเทคโนโลยีในการผลิตตัวไอซีที่ทำหน้าที่เป็น ROM มีทั้งแบบ MOS และแบบไบโพลาร์

ชนิดของ ROM

Mask ROM

หน่วยความจำประเภทนี้ ข้อมูลทั้งหมดที่อยู่ภายในจะถูกโปรแกรมมาจากโรงงานตั้งแต่ขั้นตอนการผลิตไอ ซี เราจะใช้ ROM ชนิดนี้ เมื่อข้อมูลนั้นไม่มีการเปลี่ยนแปลง และเหมาะสำหรับงานที่ผลิตครั้งละมากๆ ผู้ใช้ไม่สามารถ เปลี่ยนแปลงข้อมูลภายใน ROM ได้ ROM ประเภทนี้มีทั้งแบบไบโพลาร์และแบบ MOS

PROM (Programmable ROM)

จากไอซี ROM แบบแรกการโปรแกรมข้อมูลจะต้องโปรแกรมมาจากโรงงาน และต้องผลิตจำนวนมากจึงจะคุ้มค่ากับต้นทุนในการผลิต อีกทั้งโรงงานผู้ผลิตไอซีจะรู้ข้อมูลที่เก็บอยู่ด้วย สำหรับระบบดิจิตอลหรือคอมพิวเตอร์ที่ผลิตออกมาจำนวนไม่มากและต้องการใช้ หน่วยความจำ ROM สามารถนำหน่วยความจำ ROM มาโปรมแกรมเองได้ โดยหน่วยความจำนี้จะเรียกว่า PROM ( Programmable Read Only Memory ) หน่วยความจำประเภทนี้ เซ

ลล์เก็บข้อมูลแต่ละเซลล์จะมีฟิวส์ ( fused ) ต่ออยู่ เป็นหน่วยความจำที่ข้อมูลที่ต้องการโปรแกรมจะถูกโปรแกรมโดยผู้ใช้เอง โดยป้อนพัลส์แรงดันสูง ( HIGH VOLTAGE PULSED ) ไอซี PROM ที่ยังไม่ถูกโปรแกรมนั้น ข้อมูลทุกเซลล์หรือทุกบิตจะมีค่าเท่ากันหมด คือ มีลอจิกเป็น 1 แต่เมื่อได้มีการโปรแกรมโดยป้อนแรงดันไฟสูงๆเข้าไปจะทำให้เซลล์บางเซลล์ ฟิวส์ขาดไป ทำให้ตำแหน่งที่เซลล์นั้นต่ออยู่มีลอจิกเป็น 0 เมื่อ PROM ถูกโปรแกรมแล้ว ข้อมูลภายใน จะไม่สามารถเปลี่ยนแปลงได้อีก เนื่องจากฟิวส์ที่ขาดไปแล้วมาสามารถต่อได้ หน่วยความจำชนิดนี้ จะใช้ในงานที่ใช้ความเร็วสูง ซึ่งความเร็วสูงกว่า หน่วยความจำที่โปรแกรมได้ชนิดอื่นๆ

EPROM (Erasable Programmable ROM)

หน่วยความจำประเภท EPROM เป็นหน่วยความจำประเภท PROM ที่สามารถลบข้อมูลหรือโปรแกรมข้อมูลใหม่ได้ เหมาะสำหรับงานสร้า

งวงจรต้นแบบที่อาจต้องมีการแก้ไขโปรแกรมหรือข้อมูลใหม่ ข้อมูลจะถูกโปรแกรม โดยผู้ใช้โดยการให้สัญญาณ ที่มีแรงดันสูง ( HIGH VOLTAGE SIGNAL ) ผ่านเข้าไปในตัว EPROM ซึ่งเป็นวิธีเดียวกับที่ใช้ใน PROM หน่วยความจำประเภทนี้มี 2 ประเภท คือ ประเภทที่ลบข้อมูลด้วยรังสีอัลตราไวโอเลต หรือที่เรียกกันว่า UV PROM ส่วนอีกประเภทหนึ่งเป็นหน่วยความจำที่ลบข้อมูลด้วยไฟฟ้า เรียกว่า EEPROM ย่อมาจาก Electrical Erasable PROM

หน่วยความจำประเภท UV PROM การโปรแกรมทำได้โดยการป้อนค่าแรงดันไฟฟ้าที่เหมาะสมเข้าไป และข้อมูลจะถูกบันทึกไว้ตลอดไป สำหรับการลบข้อมูลทำได้ด้วยการฉายแสงอัลตราไวโอเลตเข้าไปในตัว ไอซี โดยผ่านทางช่องใสที่ทำด้วยผลึกควอตซ์ที่อยู่บนตัวไอซี เมื่อฉายแสงครู่หนึ่ง ( ประมาณ 5 - 10 นาที ) ข้อมูลที่อยู่ภายในก็จะถูกลบทิ้ง ซึ่งช่วงเวลาที่ฉายแสงนี้สามารถดูได้จากข้อมูลที่กำหนด ( DATA SHEET ) มากับตัว EPROM

หน่วยความจำประเภท EEPROM แม้ว่าจะลบและโปรแกรมข้อมูลได้ด้วยกระแสไฟฟ้าซึ่งสะดวกในการใช้งาน แต่ความเร็วในการอ่าน และเขียนข้อมูลจะไม่เร็วเท่าที่ควร

การอ่านขนาดความจุจาก Data Sheet

จากรูป แสดงให้เห็นส่วนประกอบพื้นฐานของ ROM ซึ่งจะมีสัญญาณต่างๆ ที่เกี่ยวข้องกับ ROM และทุกชิปที่อยู่ใน ROM มักมีการจัดแบ่งแยกหน้าที่เสมอ เช่น ขาแอดเดรสของ ROM เป็นอินพุต ส่วนขาข้อมูลจะเป็นเอาต์พุต โดยหลักการแล้วขาข้อมูลจะต่อเข้ากับบัสข้อมูลซึ่งเป็นบัส 2 ทาง ลักษณะโครงสร้างภายในของข้อมูลในหน่วยความจำสามารถดูได้จาก Data Sheet ของ ROM นั้นๆ เช่น ROM ที่ระบุเป็น 1024 8 หรือ 4096 8 ตัวเลขชุดแรก (1024,4096) จะบอกถึงจำนวนตำแหน่งที่ใช้เก็บข้อมูลภายใน ส่วนตัวเลขชุดที่สอง ( 8,8 ) จะเป็นตัวบอกถึงจำนวนบิตของข้อมูลแบบขนานที่อ่านจาก ROM ในก ารที่จะกำหนดจำนวนเส้นของบัสแอดเดรสที่ใช้กับ ROM จะสามารถรู้ได้จาก 2 ยกกำลัง x = จำนวนแอดเดรสที่อ้างถึง เช่น 2 ยกกำลัง x = 4096 จะได้ x = 12 ซึ่งก็คือ จำนวนเส้นบัสแอดเดรสนั่นเอง

การอ่านข้อมูลจาก ROM

  1. CPU จะส่งแอดเดรสไปให้ ROM แอดเดรสดังกล่าวจะปรากฏ เป็นแอดเดรสที่ต้องการอ่าน ใน ROMโดยข้อมูลจะถูกอ่านออกมาเพียงครั้งละ 1 ไบต์เท่านั้น
  2. CPU จะต้องให้ช่วงเวลาของการส่งแอดเดรสยาวนานพอประมาณ ( Wait State ) เรียกว่า Access Time โดยปกติแล้วจะต้องใช้เวลาประมาณ 100 - 300 นาโนวินาที ซึ่งขึ้นอยู่กับชนิดของ ROM ซึ่ง ROM จะใช้เวลานั้นในการถอดรหัสแอดเดรส ของข้อมูลที่ต้องการจะอ่านออกมาที่เอาต์พุตของ ROM ซึ่งถ้าใช้เวลาเร็วกว่านั้น ROM จะตอบสนองไม่ทัน
  3. CPU จะส่งสัญญาณไปทำการเลือก ROM เรียกว่า สัญญาณ CS (Chip Select) เพื่อบอกว่าต้องการเลือก ROM ซึ่งเป็นการส่งสัญญาณเพื่อยืนยันการเลือกชิปนั่นเอง
  4. ข้อมูลจะผ่านออกทางขาข้อมูลชั่วขณะจังหวะการเลือกชิป และเมื่อขาการเลือกชิปไม่แอคทีฟ ข้อมูลก็จะเข้าสู่ภาวะที่มีอิมพีแดนซ์สูง

ฟลอปปีดิสก์

แผ่นดิสก์แบบอ่อน หรือ ฟลอปปีดิสก์ (floppy disk) หรือที่นิยมเรียกว่า แผ่นดิสก์ หรือ ดิสเกตต์ (diskette) เป็นอุปกรณ์เก็บข้อมูล ที่อาศัยหลักการเหนี่ยวนำของสนามแม่เหล็ก โดยทั่วไปมีลักษณะบางกลมและบรรจุอยู่ในแผ่นพลาสติกสี่เหลี่ยม คอมพิวเตอร์สามารถอ่านและเขียนข้อมูลลงบนฟลอปปีดิสก์ ผ่านทางฟลอปปีดิสก์ไดร์ฟ (floppy disk drive)

ประวัติ

แผ่นดิสก์ยุคแรก มีขนาด 8 นิ้ว สร้างขึ้นในปี ค.ศ. 1971 เพื่อใช้กับเครื่อง System/370 ของบริษัทไอบีเอ็ม (IBM) สร้างโดย เดวิด โนเบิล ในทีมงานของ อะลัน ซูการ์ต ซึ่งต่อมา ซูการ์ตแยกตัวออกไปตั้งบริษัททำวิจัยเกี่ยวกับหน่วยความจำ ชื่อบริษัทซูการ์ต ในปี ค.ศ. 1973 แต่เพียงหนึ่งปีต่อมา บริษัทก็ขาดทุนและซูการ์ตก็ถูกไล่ออกจากบริษัทตัวเอง

นักวิจัยของบริษัทซูการ์ต ชื่อ จิม แอดคิสสัน ได้รับการติดต่อจาก An Wang เพื่อให้ลดขนาดแผ่นดิสก์ให้เล็กลง การติดต่อเกิดขึ้นที่บาร์ในบอสตัน และขนาดแผ่นดิสก์ใหม่ที่คุยกันคือขนาดเท่ากระดาษเช็ดมือในร้าน ซึ่งมีขนาด 5¼ นิ้ว ต่อมาไม่นาน บริษัทซูการ์ต ก็ผลิตแผ่นดิสก์ขนาดนี้ได้และได้รับความนิยม ในตอนแรก แผ่นมีความจุ 110 KB ต่อมา บริษัท Tandon พัฒนาให้ความจุสูงขึ้น โดยใช้วิธีเก็บข้อมูลสองหน้า (double density) ทำให้สามารถเก็บได้ 360 KB

แผ่นดิสก์เป็นที่นิยมในท้องตลาดอย่างสูง ทำให้หลายๆ บริษัททุ่มทุนวิจัยทางด้านนี้. ในปี ค.ศ. 1984 บริษัทแอปเปิล ผลิตเครื่องที่ใช้แผ่นดิสก์ขนาด 3½ นิ้วของบริษัทโซนี่ และผลักดันให้แผ่น 3½ นิ้ว เป็นมาตรฐานในวงการอุตสาหกรรมของอเมริกา ความจุเริ่มแรกของแผ่นดิสก์ขนาด 3½ นิ้ว คือ 360 KB สำหรับหน้าเดียว (single density) และ 720 KB สำหรับสองหน้า และต่อมาก็สามารถเพิ่มความจุเป็น 1.44 MB โดยการเพิ่มความจุต่อหน้า (high-density) ต่อมา ในต้นคริสต์ศตวรรษที่ 19 ก็พบวิธีทำให้มีความจุเป็น 2.88 MB (extended-density) โดยการเปลี่ยนวิธีการเคลือบแผ่น แต่รุ่นสุดท้ายนี้ไม่ได้รับความนิยม เพราะเทคโนโลยีคอมพิวเตอร์ในขณะนั้น ต้องการความจุที่สูงกว่านี้ แผ่นดิสก์จึงถูกแทนที่ด้วยหน่วยจัดเก็บข้อมูลแบบอื่นไป เช่น ซีดีรอม และ ดีวีดีรอม

คีย์บอร์ด (คอมพิวเตอร์)

คียบอร์ด หรือ แป้นพิมพ์ (ศัพท์บัญญัติใช้ว่า แผงแป้นอักขระ) เป็นอุปกรณ์คอมพิวเตอร์ที่ทุกเครื่องจำเป็นต้องมี โดยปกติมักจะมีลักษณะเป็นสี่เหลี่ยมผืนผ้าหรือใกล้เคียง มีแป้นต่างๆ ประมาณร้อยแป้นอยู่บนคีย์บอร์ด (ขึ้นอยู่กับผังแป้นพิมพ์) ซึ่งถอดแบบมาจากเครื่องพิมพ์ดีด ออกแบบมาเพื่อใช้สำหรับรับข้อมูลที่เป็นตัวอักขระ แล้วทำการเปลี่ยนเป็นรหัส 7 หรือ 8 บิต จากนั้นจึงส่งให้คอมพิวเตอร์ประมวลผล หรือใช้ควบคุมฟังก์ชันการทำงานบางอย่างของคอมพิวเตอร์ และเพื่อให้การป้อนข้อมูลที่เป็นอักขระและตัวเลขทำได้ง่ายและสะดวกขึ้น คีย์บอร์ดจึงแยกแผงที่เป็นแป้นอักขระกับแป้นตัวเลขแยกไว้ต่างหาก

ประวัติ

คีย์บอร์ดของไมโครคอมพิวเตอร์ตระกูล IBM ในรุ่นแรกๆ ประมาณปี ค.ศ. 1981 จะมีแป้นทั้งหมด 83 แป้น ซึ่งมีชื่อเรียกว่า คีย์บอร์ด PC-X และในปี ค.ศ. 1984 ก็ได้พัฒนาแป้นพิมพ์เพิ่มขึ้นเป็น 84 แป้นพิมพ์มีชื่อเรียกว่า คีย์บอร์ด PC-AT ต่อจากนั้นก็ได้พัฒนาขึ้นมาเรื่อยๆ ตามความต้องการของผู้ใช้เรียกว่า คีย์บอร์ด AT และพัฒนามาเป็นรุ่น PS/2 โดยมีแป้นพิมพ์เพิ่มขึ้นอีก 17 แป้นพิมพ์รวมแล้วก็เป็น 101 แป้นพิมพ์

เมาส์

เมาส์ (mouse) คืออุปกรณ์ที่ใช้ในการควบคุมการใช้งานในคอมพิวเตอร์ชิ้น หนึ่ง ซึ่งออกแบบเพื่อให้พอดีกับการใช้งานโดยส่วนโค้งและส่วนเว้าโค้งเข้าตามกับ อุ้งมือของผู้ใช้ โดยภายด้านใต้ของเมาส์จะมีอุปกรณ์ซึ่งตรวจจับการเคลื่อนไหวของเมาส์ โดยส่งสัญญาณไปที่คอมพิวเตอร์เพื่อแสดงผลของเคอร์เซอร์บนหน้าจอคอมพิวเตอร์

เมาส์ได้ชื่อมาจากรูปร่างของตัวมันเอง และสายไฟ ซึ่งมีลักษณะคล้ายหนูและหางหนู และขณะเดียวการเคลื่อนที่ของเคอร์เซอร์บนหน้าจอมีลักษณะการเคลื่อนที่ไม่มี ทิศทางเหมือนการเคลื่อนที่ของหนู

กำเนิดของเมาส์

เมาส์ถูกประดิษฐ์ขึ้นในปี 1963 โดยดักลัส เองเกลบาท (Douglas Engelbart) ที่สถาบันวิจัยสแตนฟอร์ด (Stanford Research Institute) หลังจากการทดสอบการใช้งานอย่างละเอียด (เมาส์เคยมีอีกชื่อนึงว่า “บัก” (bug) แต่ภายหลังได้รับความนิยมน้อยกว่าคำว่า “เมาส์”) มันเป็นหนึ่งในการทดลองอุปกรณ์ชี้ (Pointing Device) สำหรับ Engelbart's oN-Line System (NLS) ส่วนอุปกรณ์ชี้อื่นออกแบบมาเพื่อการเคลื่อนไหวในร่างกายส่วนอื่น ๆ เช่น อุปกรณ์ที่ใช้ติดกับคางหรือจมูก แต่ท้ายที่สุดแล้วเมาส์ก็ได้รับการคัดเลือกเพราะง่ายต่อการใช้งาน

เมาส์ตัวแรกนั้นเทอะทะ และใช้เฟือง 2 ตัววางในลักษณะตั้งฉากกัน การหมุนของแต่ละเฟืองจะถูกแปลไปเป็นการเคลื่อนที่บนแกนในปริภูมิ 2 มิติ เองเกลบาทได้รับสิทธิบัตรเลขที่ US3541541 ในวันที่ 17 พฤศจิกายน 1970 ชื่อ "X-Y Position Indicator For A Display System" (ตัวระบุตำแหน่ง X-Y สำหรับระบบแสดงผล) ในตอนนั้น เองเกลบาทตั้งใจจะพัฒนาจนสามารถใช้เมาส์ได้ด้วยมือเดียว

เมาส์แบบต่อมาถูกประดิษฐ์ในช่วงต้นทศวรรษที่ 1970 โดย บิล อิงลิช (Bill English) ที่ศูนย์วิจัยของบริษัท ซีรอกส์ (Xerox PARC) โดยแทนที่ล้อหมุนด้วยลูกบอลซึ่งสามารถหมุนไปได้ทุกทิศทาง การเคลื่อนไหวของลูกบอลจะถูกตรวจจับโดยล้อเล็ก ๆ ภายในอีกทีหนึ่ง เมาส์ชนิดนี้คล้าย ๆ กับแทร็กบอล และนิยมใช้กับคอมพิวเตอร์ส่วนบุคคลตลอดทศวรรษที่ 1980 และ 1990 ทำให้การใช้เมาส์และคีย์บอร์ดในเวลาเดียวกันสามารถเป็นจริงได้

เมาส์ในปัจจุบันได้รับรูปแบบมาจาก École polytechnique fédérale de Lausanne (EPFL) ภายใต้แรงบันดาลใจของ ศาสตราจารย์ Jean-Daniel Nicoud ร่วมกับวิศวกรและช่างนาฬิกาชื่อ André Guignard ซึ่งการดำเนินงานครั้งนี้ทำให้เกิดบริษัท โลจิเทค (Logitech) ผลิตเมาส์ที่ได้รับความนิยมสูงเป็นยี่ห้อแรก

ออปติคอลเมาส์

ในขณะเดียวกันก็ได้มีการพัฒนาเมาส์อีกรูปแบบนึงนั่นก็คือ ออปติคอลเมาส์ (optical mouse) ซึ่งใช้หลักการในการตรวจจับการเคลื่อนไหวโดยใช้เซนเซอร์แสงที่อยู่ใต้เมาส์ ร่วมกับแอลอีดี ออปติคอลเมาส์ในยุคแรก ๆ ประดิษฐ์โดย สตีฟ เคิร์ช (Steve Kirsch) ที่บริษัท Mouse Systems Corporation ซึ่งสามารถใช้ได้บนเมาส์แพด (mouse pad) ที่มีพิ้นผิวเป็นโลหะเฉพาะเท่านั้น แต่เมื่อคอมพิวเตอร์มีราคาถูกลง ออปติคอลเมาส์จึงได้ถูกใส่ชิปสำหรับประมวลผลภาพ (image processing chips) เข้าไป ซึ่งทำให้สามารถใช้ได้บนพื้นผิวหลายชนิดมากขึ้น โดยไม่จำเป็นต้องใช้เมาส์แพดอีกต่อไป

หลักการของเมาส์แบบที่ไม่ต้องใช้เมาส์แพด คือการใช้เซ็นเซอร์ในการตรวจจับการเคลื่อนที่ของพื้นผิวที่เกิดจากการใช้แอล อีดีส่องไปที่พื้นผิว และจะถูกส่งต่อไปที่ส่วนประมวลผลภาพเพื่อที่จะแปลงไปเป็นการเคลื่อนไหวบนแกน X และ Y โดยจะประมวลผลถึง 1512 เฟรมต่อวินาที ซึ่งในแต่ละเฟรมเป็นมีขนาด 18*18 พิกเซล และแต่ละพิกเซลมีระดับความเข้มที่แตกต่างกันได้ถึง 64 เฉด เมาส์แบบนี้มักจะสับสนกับเลเซอร์เมาส์ (laser mouse) และกลายเป็นมาตรฐานในปัจจุบันเนื่องจากความแม่นยำที่มีมากกว่าเมาส์แบบลูก กลิ้ง

ปริมาณความต้องการออปติคอลเมาส์ ส่วนหนึ่งมาจากนักเล่นเกมแนว FPS ซึ่งต้องการความแม่นยำสูงในการเล็งโดยใช้เมาส์

เปรียบเทียบออปติคอลเมาส์กับเมาส์ลูกกลิ้ง

ผู้ที่สนับสนุนออปติคอลเมาส์อ้างว่ามันทำงานได้ดีกว่าเมาส์ลูกกลิ้ง ไม่ต้องบำรุงรักษาและมีอายุการใช้งานที่ยาวนานกว่า เนื่องจากไม่มีชิ้นส่วนที่ต้องเคลื่อนไหว ส่วนทางด้านผู้สนับสนุนเมาส์ลูกกลิ้ง กล่าวว่าออปติคอลเมาส์นั้นไม่สามารถใช้บนวัสดุโปร่งแสงหรือเป็นมันได้ รวมถึงออปติคอลเมาส์ที่มีประสิทธิภาพต่ำจะมีปัญหาในการเคลื่อนเมาส์เร็ว ๆ และการซ่อมบำรุงเมาส์ลูกกลิ้งนั้นง่ายกว่า แค่ทำความสะอาดก็ใช้ได้แล้ว (แต่อย่างไรก็ดีออปติคอลเมาส์นั้นไม่ต้องการการบำรุงรักษาเลย) จุดที่แข็งที่สุดของเมาส์ลูกกลิ้งน่าจะเป็นการใช้พลังงานที่ต่ำกว่าเมื่อ เป็นเมาส์ไร้สาย โดยที่มันจะใช้กระแสไฟฟ้าประมาณ 5 mA หรือน้อยกว่า ในขณะที่ออปติคอลเมาส์จะกินไฟถึง 25 mA โดยที่เมาส์ไร้สายรุ่นเก่าๆ จะกินไฟมากขึ้นไปอีก ซึ่งเป็นผลให้ต้องเปลี่ยนแบตเตอรี่บ่อยๆ ไม่เหมาะกับการใช้งานต่อเนื่องนานๆ Optomechanical mice ใช้แสงในการตรวจจับการเคลื่อนไหวของลูกกลิ้ง ในขณะที่ออปติคอลเมาส์ตรวจจับการเคลื่อนที่ของพื้นผิวเรียบ

เลเซอร์เมาส์

ในปี 2004 Logitech ร่วมกับ Agilent Technologies ได้นำเลเซอร์เมาส์เข้าสู่ตลาด เมาส์ชนิดนี้ใช้แสงเลเซอร์แทนแอลอีดีแบบเก่า เทคโนโลยีแบบใหม่สามารถเพิ่มรายละเอียดของภาพที่ถูกประมวลผลในเมาส์ได้อีก ถึง 20 เท่าเลยทีเดียว

ปุ่ม

ปุ่มบนเมาส์ในปัจจุบันมีการเปลี่ยนแปลงจากในสมัยแรกเพียงเล็กน้อยเท่า นั้น โดยอาจจะเปลี่ยนในเรื่องรูปร่าง จำนวน และการวางตำแหน่ง เมาส์ตัวแรกที่ประดิษฐ์โดยเองเกลบาทนั้นมีเพียงปุ่มเดียว แต่ในปัจจุบันเมาส์ที่นิยมใช้กันมี 2 ถึง 3 ปุ่ม แต่ก็มีคนผลิตเมาส์ที่มีถึง 5 ปุ่มเลยทีเดียว

เมาส์ที่นิยมใช้กันจะมีปุ่มที่ 2 สำหรับเรียกเมนูลัดในซอฟต์แวร์ที่มีการออกแบบส่วนติดต่อผู้ใช้มารองรับ ไมโครซอฟท์วินโดวส์ระบบปฏิบัติการที่ได้รับความนิยมมากที่สุดก็ออกแบบมาสนับสนุนการใช้ปุ่มที่ 2 นี้ด้วย

ส่วนระบบที่ใช้กับเมาส์ 3 ปุ่มนั้น ปุ่มกลางมักจะใช้เพื่อเรียก Macro (เครื่องมือที่ใช้เพิ่มการปฏิบัติงานของ Application บางอย่าง ซึ่งเป็นโปรแกรมที่ซ่อนอยู่ภายใต้โปรแกรมนั้น เช่น โปรแกรม Excel ผู้ใช้อาจจะเขียนคำสั่งขึ้นเองเพื่อใช้ทำงานเฉพาะอย่าง นอกเหนือไปจากการทำงานตามปกติของโปรแกรมนั้น) ในปัจจุบันเมาส์แบบ 2 ปุ่มสามารถใช้งานฟังก์ชันปุ่มกลางของแบบ 3 ปุ่มได้โดย คลิกทั้ง 2 ปุ่มพร้อมกัน

ปุ่มเสริม

บางครั้งเมาส์ก็มีปุ่ม 5 ปุ่มหรือมากกว่าขึ้นอยู่กับความชอบของผู้ใช้ ปุ่มพิเศษนี้อาจจะใช้ในการเลื่อนไปข้างหน้าหรือถอยหลังสำหรับการท่องเว็บ หรือเป็นปุ่ม scrolling แต่อย่างไรก็ตามฟังก์ชันเหล่านี้ใช้ไม่ได้กับทุกซอฟต์แวร์ และมักจะมีประโยชน์กับเกมคอมพิวเตอร์มากกว่า (เช่นการเปลี่ยนอาวุธในเกมประเภท FPS) เพราะว่าปุ่มพิเศษพวกนี้ เราสามารถที่จะกำหนดฟังก์ชันอะไรลงไปก็ได้ ทำให้การใช้งานเมาส์เหล่านี้มีประสิทธิภาพมากยิ่งขึ้น

ดักลัส เองเกลบาท นั้นอยากให้มีจำนวนปุ่มมากที่สุดเท่าที่จะเป็นไปได้ แต่เค้าบอกว่าเมาส์มาตรฐานนั้นควรจะมี 3 ปุ่ม เพราะว่าเขาไม่รู้จะเพิ่มปุ่มเข้าไปตรงไหนนั่นเอง

ล้อเมาส์

นวัตกรรมอย่างหนึ่งของปุ่มเมาส์คือปุ่มแบบเลื่อน (Scroll wheel ล้อเล็ก ๆ วางในแนวขนานกับผิวของเมาส์ สามารถหมุนขึ้นและลงเพื่อจะป้อนคำสั่งใน 1 มิติได้) โดยปกติแล้วจะใช้ในการเลื่อนหน้าต่างขึ้น-ลง เป็นฟังก์ชันที่มีระโยชน์มากสำหรับการดูเอกสารที่ยาว ๆ หรือในบางโปรแกรมปุ่มพวกนี้อาจจะใช้เป็นฟังก์ชันในการซูมเข้า-ออกได้ด้วย ปุ่มนี้ยังสามารถกดลงไปตรง ๆ เพื่อจะใช้เป็นฟังก์ชันปุ่มที่ 3 ได้อีก เมาส์ใหม่ ๆ บางตัวยังมี Scroll wheel แนวนอนอีก หรืออาจจะมีปุ่มที่สามารถโยกได้ถึง 4 ทิศทาง เรียกว่า tilt-wheel หรืออาจจะมีลักษณะเป็นบอลเล็กๆ คล้ายๆ Trackball บังคับได้ทั้ง 2 มิติเรียกว่า scroll ball

การเชื่อมต่อ

เช่นเดียวกับอุปกรณ์ input อื่น ๆ เมาส์ก็ต้องการการเชื่อมต่อกับคอมพิวเตอร์เพื่อที่จะส่งข้อมูลไปให้ คอมพิวเตอร์ เมาส์ทั่ว ๆ ไปจะใช้สายไฟ เช่น RS-232C, PS/2, ADB หรือ USB โดยปัจจุบันที่นิยมใช้ที่สุด จะเป็น PS/2 และ USB ซึ่งค่อนข้างจะเกะกะ จึงมีผู้ประดิษฐ์เมาส์ไร้สายโดยส่งข้อมูลผ่าน อินฟราเรด, คลื่นวิทยุ, หรือ บลูทูธแทน

อินฟราเรด เป็นลักษณะของการถ่ายโอนข้อมูลคล้าย ๆ กับรีโมท (ทีวีหรืออุปกรณ์เครื่องใช้ไฟฟ้าทั่วไปในบ้าน) โดยที่อุปกรณ์ส่งสัญญาณและรับสัญญาณต้องอยู่ในระนาบการส่งสัญญาณที่ตรงกัน เท่านั้น (เช่นหัวของเมาส์ต้องหันหน้าไปที่ตัวรับสัญญาณตลอดเวลา) ซึ่งการใช้การส่งข้อมูลไร้สายในรูปแบบนี้ไม่เหมาะสมสำหรับอุปกรณ์ที่ต้องมี การเคลื่อนย้ายอยู่ตลอดเวลาอย่างเมาส์ จึงมีผู้ประดิษฐ์เมาส์ที่ส่งข้อมูลผ่านคลื่นวิทยุแทน

Radio mouse เป็นเมาส์ที่ส่งข้อมูลผ่านคลื่นวิทยุไร้สาย ตัวเมาส์ไม่จำเป็นที่จะต้องอยู่ในระนายเดียวกันกับตัวรับสัญญาณตลอดเวลา ทำให้ผู้ใช้สะดวกสบายมากขึ้น อีกทั้งเรื่องความได้เปรียบเกี่ยวกับระยะทางของสัญญาณ เมาส์สามารถใช้ได้ห่างจากตัวรับสัญญาณได้มากกว่าแบบ Infrared แต่เนื่องจากการใช้เมาส์ผ่านคลื่นวิทยุไร้สายนั้นเป็นการทำให้เกิดการกีดกัน และรบกวนกันระหว่างสัญญาณของตัวเมาส์เอง กับระบบโทรศัพท์ไร้สายหรืออินเทอร์เน็ตไร้สายที่อยู่ในช่วงสัญญาณเดียวกัน และอีกทั้งปัญหาเกี่ยวกับการใช้เมาส์รุ่นเดียวกันมากกว่า 2 ชิ้น ทำให้เครื่องในรัศมีการรับสัญญาณของเมาส์ที่อยู่ในคลื่น A เหมือนกันนั้นตอบรับกับเมาส์ตัวอื่น เนื่องจากส่วนใหญ่แล้วเมาส์ไร้สายจะสามารถปรับช่องสัญญาณได้เพียงแค่สองช่อง เท่านั้น (A และ B)

เพราะฉะนั้นผู้ประดิษฐ์จึงหันไปพึ่งเทคโนโลยีไร้สายมาตรฐานระบบใหม่ ที่ใช้คลื่นความถี่วิทยุเช่นกันคือ บลูทูธ แต่เนื่องจากผู้คิดค้นและริเร่มระบบบลูทูธได้คาดคำจึงถึงปัญหาเนื่องจากมี ผู้ใช้บลูทูธมากไว้แล้ว ทำให้ได้มีการวางแผนระบบการจับคู่อุปกรณ์ขึ้น ทำให้อุปกรณ์หนึ่งไม่ไปรบกวนหรือไปทำหน้าที่บนอีกอุปกรณ์หนึ่งอย่างที่ผู้ ใช้ไม่ได้ต้องการ โดยก่อนที่จะใช้อุปกรณ์ด้วยกันจะต้องมีการจับคู่อุปกรณ์กันก่อน จึงจะสามารถใช้อุปกรณ์นั้น ๆ ด้วยกันได้ และความได้เปรียบในเรื่องของความเร็วที่สูงกว่า 40KB/วินาที ของระบบบลูทูธนั้น ทำให้มันสามารถนำไปใช้ได้กับหลากหลายตลาดการสื่อสาร เช่น หูฟังไร้สาย การส่งข้อมูลไร้สาย และรวมไปถึง ตีย์บอร์ดกับเมาส์นั่นเอง

Bluetooth mouse นั้นได้ถูกออกแบบมาเพื่อทำงานกับคอมพิวเตอร์ส่วนบุคคลทั้งแบบตั้งโต๊ะและแบบ พกพา โดยบางเครื่องนั้นได้มีการติดตั้งตัวระบบส่งสัญญาณบลูทูธในเครื่องแล้วด้วย ทำให้ไม่จำเป็นที่จะต้องใช้อุปกรณ์รับสัญญาณแยกออกมาจากเครื่อง ไม่ทำให้เกิดความเกะกะและรำคาญ Bluetooth mouse กำลังจะเป็นที่นิยมกันอย่างแพร่หลายในเร็วๆ นี้ และเช่นกันสำหรับ Bluetooth keyboard

การใช้งานปุ่มโดยทั่วไป

การอินพุตผ่านเมาส์นั้นมีหลายรูปแบบนอกเหนือไปจากการเลื่อนเมาส์เพื่อ เลื่อนเคอร์เซอร์ เช่น การคลิก (การกดปุ่ม) คำว่าคลิกนั้นมีที่มาจากเสียงคลิกเวลาเรากดปุ่มเมาส์นั่นเอง เสียงนี้เกิดขึ้นจาก micro switch (cherry switch) และใช้แถบโลหะที่แข็งแต่ยืดหยุ่นเป็นตัวกระตุ้นสวิทช์ เมื่อเรากดปุ่ม แถบโลหะนี้ก็จะงอ และกระตุ้นให้สวิทช์ทำงานพร้อมทั้งเกิดเสียงคลิก และช่วยให้ภายในไม่มีภาวะสุญญากาศเกิดขึ้น นอกจากนี้นักวิจัยพบว่าผู้ใช้จะตอบสนองกับเสียงคลิกหลังจากกด มากกว่าความรู้สึกที่นิ้วกดลงไปบนปุ่ม

Single clicking

เป็นการอินพุตที่ง่ายที่สุด โดยหมายรวมทั้งการกดปุ่มบนเมาส์ชนิดปุ่มเดียวและชนิดหลายปุ่ม โดยหากเป็นเมาส์ชนิดหลายปุ่ม จะเรียกการคลิกนี้ตามตำแหน่งของปุ่ม เช่น คลิกซ้าย, คลิกขวา

Double-click

ดับเบิ้ลคลิกคือการกดปุ่ม 2 ครั้งติดต่อกันอย่างเร็ว ใน Macintosh Finder การคลิกจะเป็นการเลือกไฟล์ ส่วนการดับเบิ้ลคลิกนั้นจะเป็นการเปิดไฟล์ อย่างไรก็ดีการดับเบิ้ลคลิกนี้จะยากสำหรับผู้ที่มีปัญหาด้านการเคลื่อนไหว ของนิ้วมือ เมาส์แบบหลายปุ่มนั้นสามารถที่จะเซ็ทให้ปุ่มใดปุ่มนึงทำงานเหมือนการดับ เบิ้ลคลิกด้วยการคลิกครั้งเดียวได้ และ OS ในปัจจุบันสามารถที่จะกำหนดช่วงสูงสุดที่จะคลิกปุ่ม 2 ครั้งให้เป็นดับเบิ้ลคลิกได้

Triple-click

ทริปเปิ้ลคลิกเป็นการกดปุ่ม 3 ครั้งติดต่อกันอย่างรวดเร็ว ใช้มากที่สุดใน word processors และใน web browsers เพื่อที่จะเลือกข้อความทั้งย่อหน้า

Chords

คอร์ดส์คือการคลิกปุ่มตั้งแต่ 2 ปุ่มพร้อมกัน ซึ่งไม่ค่อยได้ใช้งานนัก ใน X Windows system การกดปุ่มซ้ายและขวาพร้อมกันจะมีผลเหมือนกับการกดปุ่มกลาง

Click-and-drag

คือการกดปุ่มบน object ค้างไว้แล้วลากไปที่ที่ต้องการ

Mouse gestures

mouse gesture เป็นวิธีการผสมผสานการเลื่อนและการคลิกเมาส์ ซึ่งซอฟต์แวร์ที่จะใช้ได้จะต้องจดจำคำสั่งพิเศษต่างๆ เหล่านี้ได้ เช่นในโปรแกรมวาดภาพ การเลื่อนเมาส์ในแนวแกน X อย่างรวดเร็วบนรูปร่างใดๆ จะเป็นการลบรูปร่างนั้น

Tactile mice

ในปี 2000 Logitech ได้เปิดตัว tactile mouse ซึ่งมีชิ้นส่วนเล็ก ๆ ที่ทำให้เมาส์สั่นได้ ซึ่งเป็นการเพิ่มส่วนติดต่อกับผู้ใช้ที่เกี่ยวข้องกับการสัมผัส เช่นการสั่นเมื่อเคอร์เซอร์อยู่ที่ขอบของ window เมาส์แบบแปลกๆ อีกชนิดหนึ่งสามารถถือไว้ในมือโดยไม่ต้องวางบนพื้นผิว โดยสามารถจับการเคลื่อนไหวได้ถึง 6 มิติ (3 มิติ + การหมุนของ 3 แกน) ซึ่งมีกลุ่มเป้าหมายสำหรับการนำเสนอทางธุรกิจ เมื่อผู้พูดจะต้องยืนหรือเดินไปมา อย่างไรก็ดี เมาส์ชนิดนี้ไม่ได้รับความนิยมในวงกว้าง

ความเร็วของเมาส์

ความเร็วของเมาส์มีหน่วยเป็น DPI (Dots Per Inch) ซึ่งคือจำนวนพิกเซลที่เคอร์เซอร์จะเลื่อนได้เมื่อเลื่อนเมาส์ไป 1 นิ้ว Mouse acceleration/deceleration เป็นทริกของซอฟต์แวร์ที่สามารถทำให้เมาส์เลื่อนช้ากว่าหรือเร็วกว่าความเร็ว ปกติของมันได้ แต่มีอีกหน่วยนึงที่ไม่ค่อยได้รับความนิยมคือหน่วย Mickey เพราะว่าค่า Mickey เกิดจากการนับ dot ที่เคอร์เซอร์เคลื่อนไปได้โดยคิดรวมถึง Mouse acceleration/deceleration ด้วย ทำให้ค่า Mickey สำหรับการใช้งานแต่ละครั้งอาจจะไม่เท่ากัน จึงไม่ได้รับความนิยม

อุปกรณ์เสริม

แผ่นรองเมาส์

เป็นอุปกรณ์เสริมที่ได้รับความนิยม ซึ่งช่วยให้เลื่อนเมาส์ได้อย่างราบรื่น เนื่องจากโต๊ะหลายชนิดไม่เหมาะที่จะใช้เลื่อนเมาส์โดยตรง เช่นไม้เนื้อหยาบหรือพลาสติกเพราะจะทำให้ด้านล่างของเมาส์เสียหายเร็วเกินไป optical mouse บางตัวไม่ต้องใช้กับเมาส์แพดเพราะได้รับการออกแบบให้ใช้กับผิวไม้ได้โดยตรง ส่วนเมาส์แบบลูกกลิ้งนั้นจะต้องใช้เมาส์แพดเนื่องจากลูกกลิ้งต้องการแรง เสียดทานที่น้อยกว่าปกติซึ่งจะช่วยให้ลูกกลิ้งหมุนได้อย่างราบรื่น

Mouse feet covers

Mouse feet cover ทำด้วยเทฟลอน ใช้แปะที่ด้านล่างของเมาส์ ซึ่งช่วยให้สามารถขยับเมาส์ได้สะดวกยิ่งขึ้น

Cord managers

เป็นอุปกรณ์เสริมที่ช่วยจัดการกับสายเมาส์ที่ระโยงรพยางเกะกะ ดังนั้นอุปกรณ์ชิ้นนี้จึงไม่จำเป็นสำหรับเมาส์ไร้สาย

Gel wrist pad

Gel wrist pad เป็นแผ่นนิ่มๆ ใช้รองใต้ข้อมือเพื่อเพิ่มความสบายขณะใช้เมาส์ โดยได้รับการออกแบบให้เข้ากับสรีระของมนุษย์ทำให้ลดความเมื่อยจากการใช้ เมาส์เป็นเวลานานๆ ได้

ตลาดของเมาส์

ในปี ค.ศ.1970 บริษัท Xerox PARC ได้ออกเมาส์รุ่น Xerox Star แต่ต่อมาบริษัท Apple ก็ออก Apple Lisa ออกมาแข่ง แต่อย่างไรก็ดีเมาส์ของทั้ง 2 บริษัทกลับไม่ประสบผลสำเร็จทางธุรกิจ จนกระทั่งการเปิดตัวของ Apple Macintosh ในปี 1984 ทำให้เมาส์ได้ใช้ในวงกว้างมากยิ่งขึ้น

การเปิดตัวของ Apple Macintosh มีอิทธิพลมาก เนื่องจากความสำเร็จของเครื่อง Apple Macintosh ทำให้ผู้ผลิตหลายรายเริ่มจะผลิตเมาส์กันมากขึ้น และเมื่อระบบ graphical user interfaces (GUI) เข้ามาในทศวรรษที่ 1980 และ 1990 ทำให้เมาส์เป็นอุปกรณ์ที่ขาดไม่ได้เมื่อจะใช้คอมพิวเตอร์ ในปี 2000 Dataquest (หน่วยงานทางด้านสถิติแห่งหนึ่งของสหรัฐฯ) ประมาณการว่าเมาส์ได้ถูกขายไปแล้วทั่วโลกรวมมูลค่าทั้งสิ้น 1.5 พันล้านดอลลาร์

เมาส์แบบอื่น

นอกจากเมาส์แบบปกติที่กล่าวมาแล้ว ซึ่งมักจะเป็นเมาส์แบบใช้ด้วยมือ แต่ยังมีเมาส์แบบอื่นๆ อีก โดยทำสำหรับผู้ที่มักมีปัญหาเกี่ยวกับข้อมือเมื่อใช้เมาส์เป็นเวลานานๆ และผู้ที่ใช้เมาส์แล้วรู้สึกไม่สะดวก ซึ่งเมาส์แบบพิเศษนี้มีรูปแบบต่างๆ กันดังนี้

  • Trackball – ใช้โดยเคลื่อนบอลบนแท่น
  • Mini-mouse – เมาส์ขนาดไข่ไก่ ซึ่งออกแบบมาเพื่อสะดวกต่อการพกพา มักจะใช้กับแลปทอป
  • Camera mouse - กล้องที่จะจับการเคลื่อนที่ของศีรษะแล้วเลื่อนเคอร์เซอร์บนจอไปตาม
  • Palm mouse – ใช้ถือไว้ในมือ และสามารถเร่งความเร็วของเมาส์ได้โดยการกดให้แรงขึ้น
  • Foot mouse – แทนที่จะใช้นิ้วมือกด ก็มาใช้เท้ากดแทน
  • Joy-Mouse – เป็นการรวมกันระหว่างเมาส์และจอยสติก โดยการเลื่อนเคอร์เซอร์จะเปลี่ยนมาใช้การโยกจอยแทน

Mice in gaming

เมาส์มักจะถูกใช้ในการเล่นเกมคอมพิวเตอร์ โดยจะใช้ร่วมกับคีย์บอร์ด ซึ่งเมาส์นี้มักจะถูกยกไปอ้างเป็นข้อได้เปรียบของเกมคอมพิวเตอร์ที่วิดีโอ เกมไม่มี

First-person shooters

การใช้เมาส์ร่วมกับคีย์บอร์ดเป็นวิธีที่ได้รับความนิยมในการเล่นเกม ประเภท first-person shooter (FPS) แกน X ของเมาส์คือการมองซ้าย-ขวา ในขณะที่แกน Y ใช้มองขึ้น-ลง ปุ่มซ้ายมักจะใช้ยิง นักเล่นเกมหลายคนชอบที่จะใช้ Gamepad มากกว่าเพราะสามารถที่จะตอบสนองได้รวดเร็วและม่นยำมากกว่า ส่วนปุ่มขวามักจะใช้ยิงปืนพิเศษ ล้อเมาส์ใช้ในการเปลี่ยนอาวุธ ในบางเกมฟังก์ชันเหล่านี้อาจจะถูกกำนดให้ใช้กับปุ่มที่นิ้วโป้ง ส่วนคีย์บอร์ดนั้นจะใช้ในการเคลื่อนที่ (เช่น w,a,s และ d หรือที่รู้จกกันว่าระบบ wasd ใช้สำหรับการเคลื่อนที่ไปข้างหน้า, ถอยหลัง, ยิงทางซ้าย และยิงทางขวา) และการใช้ท่าแบบอื่น ๆ ฯลฯ และเนื่องจากบางเกมต้องใช้เมาส์ในการเล็ง ทำให้ผู้เล่นที่ใช้เมาส์ที่มีความแม่นยำสูง จะได้เปรียบผู้เล่นที่ใช้เมาส์ที่มีความแม่นยำต่ำ

ในหลายๆ เกม เช่น เกมแนว FPS หรือ TPS จะมีการตั้งค่าแบบหนึ่งเรียกว่า "invert mouse" หรือใกล้เคียง มันจะทำให้ผู้ใช้มองลงด้านล่างด้วยการเคลื่อนเมาส์ไปข้างหน้า และมองไปด้านบนเมื่อเลื่อนเมาส์ถอยหลัง (ตรงข้ามกับการตั้งค่าแบบปกติ) ระบบการควบคุมแบบนี้คล้ายกับการบังคับอากาศยานซึ่งการดึงคันโยกเข้าหาตัวจะ ทำให้เครื่องลอยขึ้นสูง และการโยกคันโยกออกจากตัวจะทำให้เครื่องลดระดับลง ต่อมาระบบการควบคุมแบบนี้ ก็ถูกนำมาใช้กับจอยสติกด้วยเช่นกัน

การ์ดเสียง

การ์ดเสียง หรือ ซาวน์การ์ด (sound card) คืออุปกรณ์คอมพิวเตอร์ที่ทำหน้าที่แปลงข้อมูลดิจิทัลที่เก็บรายละเอียดเกี่ยวกับเสียงต่างๆ แปลงเป็นสัญญาณเสียงในรูปแบบสัญญาณทางไฟฟ้า

การ์ดแสดงผล

การ์ดแสดงผล หรือ การ์ดจอ (video card หรือ display card) เป็นอุปกรณ์ที่รับข้อมูลเกี่ยวกับการแสดงผลจากหน่วยความจำ มาคำนวณและประมวลผล จากนั้นจึงส่งข้อมูลในรูปแบบสัญญาณเพื่อนำไปแสดงผลยังอุปกรณ์แสดงผล (มักเป็นจอภาพ)

การ์ดแสดงผลมีชื่อในภาษาอังกฤษหลายคำ รวมถึง video card, display card, graphic adaptor, graphics card, video card, video board, video display board, display adapter, video adapter

การทำงาน

การ์ดแสดงผลสมัยเก่าทำหน้าที่แปลงข้อมูลดิจิทัลเป็นสัญญาณเท่านั้น แต่จากกระแสของการ์ดเร่งความเร็วสามมิติ ในช่วงครึ่งหลังของทศวรรษที่ 90 โดยบริษัท 3dfx และ nVidia ทำให้เทคโนโลยีด้านสามมิติพัฒนาไปมาก ปัจจุบันการ์ดแสดงผลสมัยใหม่ได้รวมความสามารถในการแสดงผลภาพสามมิติมาไว้เป็นมาตรฐาน และได้เรียกชื่อใหม่ว่า GPU (Graphic Processing Unit) โดยสามารถลดงานด้านการแสดงผลของของหน่วยประมวลผลกลาง (CPU) ได้มาก

ในปัจจุบันการ์ดแสดงผลจำนวนมากไม่อยู่ในรูปของการ์ด แต่จะอยู่เป็นส่วนหนึ่งของแผงเมนบอร์ดซึ่งทำหน้าที่เดียวกัน วงจรแสดงผลเหล่านี้มักมีความสามารถด้านสามมิติค่อนข้างจำกัด แต่ก็เหมาะสมกับงานในสำนักงาน เล่นเว็บ อ่านอีเมล เป็นต้น สำหรับผู้ที่ต้องการความสามารถด้านสามมิติสูง ๆ เช่น ใช้เพื่อเล่นเกมคอมพิวเตอร์ ฮาร์ดแวร์ยังอยู่ในรูปของการ์ดที่ต้องเสียบเพิ่มเพื่อให้ได้ภาพเคลื่อนไหว ที่เป็นสามมิติที่สมจริง ในทางกลับกัน การใช้งานบางประเภท เช่น งานทางการแพทย์ กลับต้องการความสามารถการแสดงภาพสองมิติที่สูงแทนที่จะเป็นแบบสามมิติ

เดิมการ์ดแสดงผลแบบสามมิติอยู่แยกกันคนละการ์ดกับการ์ดแบบสองมิติและต้อง มีการต่อสายเชื่อมถึงกัน เช่น การ์ด Voodoo ของบริษัท 3dfx ซึ่งปัจจุบันไม่มีแล้ว ปัจจุบันการ์ดแสดงผลสามมิติมีความสามารถเกี่ยวกับการแสดงผลสองมิติในตัว

ผู้ผลิตการ์ดแสดงผล

ผู้ผลิตรายใหญ่
  • ATI Technologies - Radeon, Radeon X
  • NVIDIA Corporation - GeForce, GeForce FX, GeForce 6, GeForce 7, GeForce 8, GeForce 9

ผู้ผลิตการ์ดเฉพาะทาง

  • Matrox - Parhelia and P-series
  • 3Dlabs - Wildcat

ผู้ผลิตรายย่อย

  • S3 Graphics - Chrome series
  • XGI Technology Inc. - Volari
  • Tech Source - Raptor

เมนบอร์ด



เมนบอร์ดคอมพิวเตอร์โดยทั่วไป
(ในรูป ASRock KT400A)

เมนบอร์ด (mainboard) หรือ มาเธอร์บอร์ด (motherboard) เป็นแผงวงจรหลักของระบบคอมพิวเตอร์

สำหรับเมนบอร์ดของคอมพิวเตอร์ส่วนบุคคล โดยทั่วไปจะประกอบด้วย หน่วยประมวลผลกลาง, ไบออส และหน่วยความจำหลัก พร้อมช่องให้สามารถเชื่อมต่ออุปกรณ์เสริมอื่นๆ ได้ทั้งอุปกรณ์เสริมภายในและอุปกรณ์เสริมเชื่อมต่อจากภายนอก

ในบางประเทศ โดยเฉพาะในโฆษณาขายคอมพิวเตอร์ส่วนบุคคล นิยมใช้ศัพท์แสลงเรียกเมนบอร์ดว่า mobo (โมโบ) โดยเป็นคำย่อจาก motherboard

รูปแบบ

  • PC/XT เป็นรุ่นบุกเบิกสร้างขึ้นโดยบริษัท IBM
  • AT (Advance Technology) มีชื่อในยุค 386 แต่ตกรุ่นเมื่อมีรุ่น ATX
  • ATX เป็นรุ่นที่เป็นที่นิยมจวบจนยุคปัจจุบัน
  • ETX ใช้ใน embedded systems
  • LPX ถูกออกแบบโดย Western Digital
  • BTX (Balanced Technology eXtended) เป็นเมนบอร์ดรุ่นใหม่ที่ถูกนำเสนอโดย Intel
  • Mini-ITX (VIA Epia)ถูกออกแบบโดย VIA
  • WTX (Workstaion Technology eXtended) เป็นเมนบอร์ดสำหรับระบบคอมพิวเตอร์ขนาดใหญ่

คอมพิวเตอร์ส่วนบุคคล

คอมพิวเตอร์ส่วนบุคคล (personal computer) หรือ พีซี (PC) เดิมทีเป็นคำไว้ใช้เรียก เครื่องคอมพิวเตอร์ราคาย่อมเยา สำหรับใช้ส่วนบุคคล ปัจจุบันใช้รวมความไปถึงอีกสามความหมายด้วยกัน:

คำว่า "คอมพิวเตอร์ส่วนบุคคล" เริ่มมีใช้ตั้งแต่ พ.ศ. 2515 (ค.ศ. 1972) สำหรับกล่าวถึงเครื่อง Xerox PARC ของบริษัท Xerox Alto อย่างไรก็ตามจากความประสบความสำเร็จของไอบีเอ็มพีซี ทำให้การใช้คำว่า คอมพิวเตอร์ส่วนบุคคลหมายถึง เครื่องไอบีเอ็มพีซี

  • เครื่องคอมพิวเตอร์รุ่นพีซี ของไอบีเอ็ม ซึ่งเป็นที่มาของคำดังกล่าว - ดู ไอบีเอ็มพีซี
  • คำสามัญ สำหรับเรียกเครื่องไมโครคอมพิวเตอร์ ที่เข้ากันได้กับข้อกำหนดจำเพาะของไอบีเอ็ม (IBM compatible)
  • คำสามัญ ที่บางครั้งใช้เรียกเครื่องไมโครคอมพิวเตอร์ทุกชนิด

ส่วนประกอบของคอมพิวเตอร์ส่วนบุคคล

เครื่องคอมพิวเตอร์จะแบ่งออกเป็น ส่วนของฮาร์ดแวร์ (Hardware) และ ซอฟต์แวร์ (Software) ซึ่ง ส่วนของ Hardware จะประกอบด้วย

ประวัติฮาร์ดแวร์คอมพิวเตอร์

วิวัฒนาการก่อนจะมาเป็นคอมพิวเตอร์

คอมพิวเตอร์นั้นมีวิวัฒนาการที่รวดเร็วมาก ตั้งแต่ยุคสมัยดึกดำบรรพ์เป็นต้นมา มนุษย์เรามีความพยายามที่จะคิดค้นเครื่องมือให้มาช่วยในการคำนวณและการนับ ตั้งแต่เริ่มต้นใช้นิ้วมือนับ จนมาใช้ก้อนกรวด หิน มนุษย์จึงคิดค้นวิธีการที่ง่ายกว่านี้ จนกลายมาเป็นกลไกที่ใช้ในการคำนวณ จนวิวัฒนาการมาเป็นคอมพิวเตอร์ในปัจจุบัน โดยแบ่งเป็น 4 ยุค ดังนี้

  1. ยุคก่อนเครื่องจักรกล (Premachanical)
  2. ยุคเครื่องจักรกล (Mechanical)
  3. ยุคเครื่องจักรกลระบบอิเล็กทรอนิกส์ (Electromechanical)
  4. ยุคเครื่องอิเล็กทรอนิกส์ (Electronic)

คอมพิวเตอร์ในยุคเริ่มแรก

คอมพิวเตอร์ในยุคเริ่มแรกยังไม่มีชิปประมวลผลหรือระบบปฏิบัติการในปัจจุบัน โดยถ้าย้อนกลับไปเมื่อประมาณ 400 กว่าปีที่แล้วส่วนใหญ่ คอมพิวเตอร์เหล่านี้มักใช้ในการคำนวณมากกว่า

ลูกคิดของชาวจีน

อุปกรณ์ชนิดแรกของโลกที่เป็นเครื่องมือในการคำนวณก็คือลูกคิดนั่นเอง ซึ่งถือได้ว่า เป็นอุปกรณ์ใช้ช่วยการคำนวณที่เก่าแก่ที่สุดในโลกและคงยังใช้งานมาจนถึงปัจจุบัน ในปี พ.ศ. 2158 นักคณิตศาสตร์ชาวสก็อตแลนด์ชื่อ John Napier ได้สร้างอุปกรณ์ใช้ ช่วยการคำนวณขึ้นมา เรียกว่า Napier's Bones มีรูปร่างคล้ายสูตรคูณในปัจจุบัน ในปี พ.ศ. 2185 นักคณิตศาสตร์ชาวฝรั่งเศสชื่อ Blaise Pascal คิดว่าน่าจะมีวิธีที่จะคำนวณตัวเลขได้ง่ายกว่า เขาได้ออกแบบ เครื่องมือช่วยในการคำนวณโดย ใช้หลักการหมุนของฟันเฟืองหนึ่งอันถูกหมุนครบ 1 รอบ ฟันเฟืองอีกอันหนึ่งซึ่งอยู่ ทางด้านซ้ายจะถูกหมุนไปด้วยในเศษ 1 ส่วน 10 รอบ เครื่องมือของปาสคาลนี้ถูกเผยแพร่ออกสู่สาธารณะชน เมื่อ พ.ศ. 2188 แต่ไม่ประสบความสำเร็จเท่าที่ควรเนื่องจากราคาแพง และเมื่อใช้งานจริงจะเกิดฟันเฟืองติดขัดบ่อยๆ ทำให้ผลลัพธ์ที่ได้ไม่ค่อยถูกต้องตรงความเป็นจริง

เครื่องคำนวณของปาสคาล

ในสมัยนั้นยังไม่มีเครื่องจักรใดที่สามารถทำตามคำสั่งหรือทำงานเองโดยอัตโนมัติได้แต่ใน พ.ศ. 2344 นักประดิษฐ์ชาวฝรั่งเศสชื่อ Joseph Marie Jacquard ได้พยายามพัฒนาเครื่องทอผ้าโดย ใช้ บัตรเจาะรูในการใส่คำสั่งให้ควบคุมเครื่องทอผ้าให้ทำตามแบบที่กำหนดไว้ และแบบดังกล่าวสามารถนำมา สร้างซ้ำๆ ได้อีกหลายครั้ง ความพยายามของ Jacquard สำเร็จลงใน พ.ศ. 2348 เครื่องทอผ้านี้ถือว่าเป็น เครื่องทำงานตามคำสั่งเป็นเครื่องแรก และตั้งแต่ Jacquard ได้ประดิษฐ์สิ่งนี้ขึ้นมาทำให้มีเครื่องกลเกิดขึ้นมาหลายอย่าง และได้มีเครื่องมือชนิดหนึ่งที่ได้เปลี่ยนวงการของเครื่องคอมพิวเตอร์และการ คำนวณ โดยอุปกรณ์ที่ว่านี้มีชื่อว่าเครื่องหาผลต่าง (Difference Engine) โดยเจ้าเครื่องนี้มีความคล้ายกับเครื่องคิดเลขในปัจจุบันนั่นเอง โดย Chales Babbage เป็นผู้สร้างเครื่องนี้ขึ้นมา ในปี พ.ศ. 2373 เขาได้รับความช่วยเหลือจากรัฐบาลอังกฤษเพื่อ สร้างเครื่อง Difference Engine ขึ้นมาจริงๆ แต่ในขณะที่ Babbage ทำการสร้างเครื่อง Difference Engine อยู่นั้น ได้พัฒนาความคิดไปถึงเครื่องมือในการคำนวณที่มีความสามารถสูงกว่านี้ ซึ่งก็คือเครื่องที่เรียกว่าเครื่องวิเคราะห์ (Analytical Engine) และได้ยกเลิกโครงการสร้างเครื่อง Difference Engine ลงแล้วเริ่มต้นงานใหม่ คือ งานสร้างเครื่องวิเคราะห์ ในความคิดของเขา โดยที่เครื่องดังกล่าวประกอบไปด้วยชิ้นส่วนที่สำคัญ 4 ส่วน คือ

  1. ส่วนเก็บข้อมูล เป็นส่วนที่ใช้ในการเก็บข้อมูลนำเข้าและผลลัพธ์ที่ได้จากการคำนวณ
  2. ส่วนประมวลผล เป็นส่วนที่ใช้ในการประมวลผลทางคณิตศาสตร์
  3. ส่วนควบคุม เป็นส่วนที่ใช้ในการเคลื่อนย้ายข้อมูลระหว่างส่วนเก็บข้อมูล และส่วนประมวลผล
  4. ส่วนรับข้อมูลเข้าและแสดงผลลัพธ์ เป็นส่วนที่ใช้รับทราบข้อมูลจากภายนอกเครื่องเข้าสู่ส่วนเก็บ และแสดงผลลัพธ์ที่ได้จากการคำนวณให้ผู้ใช้ได้รับทราบ
เครื่องหาผลต่าง

เป็นที่น่าสังเกตว่าส่วนประกอบต่างๆ ของเครื่อง Alaytical Engine มีลักษณะใกล้เคียงกับส่วนประกอบ ของระบบคอมพิวเตอร์ ในปัจจุบันมาก แต่น่าเสียดายที่เครื่อง Alalytical Engine ของ Babbage นั้นไม่สามารถ สร้างให้สำเร็จขึ้นมาได้ ทั้งนี้เนื่องจากเทคโนโลยี สมัยนั้นไม่สามารถสร้างส่วนประกอบต่างๆ ดังกล่าว และอีกประการหนึ่งก็คือ สมัยนั้นไม่มีความจำเป็น ต้องใช้เครื่องที่มีความสามารถสูงขนาดนั้น ดังนั้นรัฐบาล อังกฤษจึงหยุดให้ความสนับสนุนโครงการของ Babbage ทำให้ไม่มีทุนที่จะทำการวิจัยต่อไป สืบเนื่องจากมาจากแนวความคิดของ Analytical Engine เช่นนี้จึงทำให้ Charles Babbage ได้รับการยกย่อง ให้เป็น บิดาของเครื่องคอมพิวเตอร์ และหลังจากนั้นอุปกรณ์ทางคอมพิวเตอร์ก็เริ่มพัฒนาขึ้น แต่มีอย่างหนึ่งที่ยังไม่มีในยุคนั้น สิ่งนั้นก็คือโปรแกรมนั้นเอง เนื่องจากในสมัยนั้นไม่มีใครคิดที่จะทำคอมพิวเตอร์สำหรับทำงานขึ้นมา แต่ใน พ.ศ. 2385 ชาวอังกฤษ ชื่อ Lady Auqusta Ada Byron ได้ทำการแปลเรื่องราวเกี่ยวกับเครื่อง Anatical Engine จากภาษาฝรั่งเศสเป็นภาษาอังกฤษใน ระหว่างการแปลทำให้ Lady Ada เข้าใจถึงหลักการทำงาน ของเครื่อง Analytical Engine และได้เขียนรายละเอียดขั้นตอนของคำสั่งให้เครื่องนี้ทำการคำนวณที่ยุ่งยาก ซับซ้อนไว้ในหนังสือทางคณิตศาสตร์เล่มหนึ่ง ซึ่งถือว่าเป็นโปรแกรมคอมพิวเตอร์โปรแกรมแรกของโลก และจากจุดนี้จึงถือว่า Lady Ada เป็นโปรแกรมเมอร์คนแรกของโลก (มีภาษาที่ใช้เขียนโปรแกรมที่เก่าแก่ อยู่หนึ่งภาษาคือภาษา Ada มาจาก ชื่อของ Lady Ada) นอกจากนี้ Lady Ada ยังค้นพบอีกว่าชุดบัตรเจาะรูที่บรรจุคำสั่งไว้สามารถนำกลับมาทำงานซ้ำได้ถ้า ต้องการ นั่นคือหลักของการทำงานวนซ้ำ หรือเรียกว่า Loop เครื่องมือที่ใช้ในการคำนวณที่ถูกพัฒนาขึ้นในศตวรรษที่ 19 นั้น ทำงานกับเลขฐานสิบ (Decimal Number) แต่เมื่อเริ่มต้นของศตวรรษที่ 20 ระบบคอมพิวเตอร์ได้ถูกพัฒนาขึ้นจึงทำให้มีการเปลี่ยนแปลงมาใช้ เลขฐ (Binary Number) กับระบบคอมพิวเตอร์ ที่เป็นผลสืบเนื่องมาจากหลักของพีชคณิต

ตอนนี้คอมพิวเตอร์เริ่มพัฒนามาเรื่อยๆ จวบจนถึงยุคคอมพิวเตอร์อิเล็กทรอนิกส์ โดยบริษัทที่ได้ทำคอมพิวเตอร์อิเล็กทรอนิกส์ก็คือบริษัท ไอบีเอ็ม (IBM) นั่นเอง

การกำเนิดของเครื่องคอมพิวเตอร์อิเล็กทรอนิกส์

โดยอุปกรณ์สมัยเก่ามักจะเป็นเฟืองหรือไม้ซึ่งหนักมากทำให้คนต้องพัฒนาเครื่องมือให้มีขนาดเล็กลง

พ.ศ.2480 ศาสตราจารย์ Howard Aiken แห่ง มหาวิทยาลัยฮาร์วาร์ดได้พัฒนาเครื่องคำนวณ ตาม แนวคิด ของ Babbage ร่วมกับวิศวกรของบริษัท IBM สร้างเครื่องคำนวณตามความคิดของ Babbage ได้ สำเร็จ โดยเครื่องดังกล่าวทำงานแบบเครื่องจักรกลปนไฟฟ้า และใช้บัตรเจาะรูเป็นสื่อในการนำเข้าข้อมูลสู่เครื่องเพื่อทำการประมวลผล การพัฒนาดังกล่าวมาเสร็จสิ้นในปี พ.ศ. 2487 โดยเครื่องมือนี้มีชื่อว่า MARK 1 และเนื่องจากเครื่องนี้สำเร็จได้จากการสนับสนุนด้านการเงินและบุคลากร จากบริษัท IBM ดังนั้นจึงมีอีกชื่อ หนึ่งว่า IBM Automatic Sequence Controlled Calculator และนับเป็นเครื่องคำนวณแบบอัตโนมัติเครื่องแรกของโลก และในเมื่อมีเครื่องคำนวณที่สามารถคำนวณแบบอัตโนมัติได้ ทำให้มีคนคิดที่นำไปใช้ในสงครามซึ่งถ้าใช้เครื่องคำนวณที่มี อยู่ในสมัยนั้นจะต้องใช้เวลาถึง 12 ชั่วโมงในการคำนวณ การยิงจรวด 1 ครั้ง ดังนั้นกองทัพจึงให้กองทุนอุดหนุนแก่ John W. Mauchly และ Persper Eckert จาก, มหาวิทยาลัยเพนซิลวาเนีย ในการสร้างคอมพิวเตอร์ จากอุปกรณ์อิเล็กทรอนิกส์ขึ้นมา โดยนำหลอดสุญญากาศ (Vacuum Tube) จำนวน 18,000 หลอด มาใช้ในการสร้าง ซึ่งมีข้อดีคือ ทำให้เครื่องมีความเร็ว และมีความถูกต้องแม่นยำในการคำนวณมากขึ้น และความคิดต่อมาในการพัฒนาเครื่องคอมพิวเตอร์ให้ดีขึ้นก็คือ การค้นหาวิธีการเก็บโปรแกรมไว้ในเครื่องได้ เพื่อลดความยุ่งยาก ของขั้นตอนการป้อนคำสั่งเข้าเครื่องครั้งต่อครั้ง มีเชื้อสายฮังกาเรียนชื่อ Dr.John Von Neumann ได้พบวิธีการเก็บโปรแกรมไว้ ในหน่วยความจำของเครื่องเช่นเดียวกับการเก็บข้อมูลและต่อวงจรไฟฟ้า สำหรับการคำนวณ และการปฏิบัติการพื้นฐาน ไว้ให้เรียบร้อยภายในเครื่อง แล้วเรียกวงจรเหล่านี้ด้วยรหัสตัวเลขที่กำหนดไว้ เครื่องคอมพิวเตอร์ที่ถูกพัฒนาขึ้นตามแนวความคิดนี้ได้แก่ EVAC (Electronic Ddiscreate Variable Automatic Computer) ซึ่งสร้างเสร็จใน พ.ศ. 2492 และนำมาใช้งานจริงในปี และในเวลาใกล้เคียงกัน ที่ มหาวิทยาลัยเคมบริดจ์ ประเทศอังกฤษ ได้มีการสร้างคอมพิวเตอร์มีลักษณะคล้ายกับเครื่อง EVAC และให้ชื่อว่า EDSAC (Electronic Delay Strorage Automatic Caculator)

เครื่องคอมพิวเตอร์ในแต่ละยุค

หลอดสุญญากาศ

คอมพิวเตอร์ยุคที่ 1 (พ.ศ. 2497-2501)

อยู่ระหว่างปี พ.ศ. 2497 ถึง พ.ศ. 2501 เป็นยุคของคอมพิวเตอร์ที่ใช้หลอดสุญญากาศ (Vacuum tube)ซึ่งใช้กำลังไฟฟ้าสูงมาก ถึงแม้จะมีระบบระบายความร้อนที่ดี แต่จะมีปัญหาในเรื่องความร้อนและไส้หลอดขาดบ่อย การสั่งงานใช้ภาษาเครื่องซึ่งเป็นรหัสตัวเลขที่ยุ่งยากและซับซ้อน เครื่องคอมพิวเตอร์ของยุคนี้มีขนาดใหญ่ เช่น มาร์ค วัน (MARK I), อีนิแอค (ENIAC), ยูนิแวค (UNIVAC)

คอมพิวเตอร์ยุคที่ 2 (พ.ศ. 2502-2507)

คอมพิวเตอร์ยุคนี้ใช้ทรานซิสเตอร์ (Transistor) เป็นวงจรอิเล็กทรอนิกส์ และใช้วงแหวนแม่เหล็กเป็นหน่วยความจำ คอมพิวเตอร์มีขนาดเล็กกว่ายุคแรก ต้นทุนต่ำกว่า ใช้กระแสไฟฟ้าและมีความแม่นยำมากกว่า มีอุปกรณ์เก็บข้อมูลสำรองในรูปแบบของสื่อแม่เหล็ก สามารถเขียนโปรแกรมระดับสูงได้

ไอซี Intel 8008

คอมพิวเตอร์ยุคที่ 3 (พ.ศ. 2508-2513)

คอมพิวเตอร์ยุคนี้ใช้ วงจรไอซี (Integrated Circuit) เป็นสารกึ่งตัวนำที่สามารถบรรจุวงจรทางตรรกะไว้แล้วพิมพ์บนแผ่นซิลิกอน(Silicon) เรียกว่า "ชิป"

ไมโครโพรเซสเซอร์

คอมพิวเตอร์ยุคที่ 4 (พ.ศ. 2514-2523)

คอมพิวเตอร์ยุคนี้ใช้ วงจร LSI (Large Scale Integration) เป็นการรวมวงจรไอซีจำนวนมากลงในแผ่นซิลิกอนชิป 1 แผ่น สามารถบรรจุได้มากกว่า 1 ล้านวงจร ด้วยเทคโนโลยีใหม่นี้ทำให้เกิดแนวคิดในการบรรจุวงจรที่สำคัญสำหรับการทำงาน พื้นฐานของคอมพิวเตอร์นั่นคือ CPU ลงชิปตัวเดียว เรียกว่า "ไมโครโพรเซสเซอร์"

คอมพิวเตอร์ยุคที่ 5 (พ.ศ. 2524-ปัจจุบัน)

คอมพิวเตอร์ยุคนี้ใช้ วงจร VLSI (Very-large-scale integration) เป็นการพัฒนาไมโครโพรเซสเซอร์ให้มีประสิทธิภาพมากขึ้น

ก่อกำเนิด ไมโครโพรเซสเซอร์

ถึงแม้จะมีคอมพิวเตอร์อิเล็กทรอนิกส์ก็ตามแต่คอมพิวเตอร์ก็ยังมีขนาดใหญ่ อยู่และไม่สามารถเก็บข้อมูลได้มาก ทำให้ต้องพัฒนาไมโครโพรเซสเซอร์เพื่อการประมวลผมในคอมพิวเตอร์ให้แม่นยำขึ้น โดยบริษัทที่พัฒนาไมโครโพรเซสเซอร์จนเป็นเหมือนปัจจุบันคือบริษัท อินเทล (Intel) นั่นเอง

เมื่อก่อนนั้น Intel (R) เป็นบริษัทผลิตชิปไอซีแห่งหนึ่งที่ไม่ใหญ่โตมากนักเท่าในปัจจุบันนี้ เมื่อปี ค.ศ.1969ได้สร้างความสะเทือน ให้กับวงการอิเล็คทรอนิคส์ โดยการออกชิปหน่วยความจำ (Memory) ขนาด 1 Kbyte (ถือว่าเยอะมากในสมัยนั้น) มาเป็นรายแรก ในปี ค.ศ.1971 Intel ได้นำผลิตภัณฑ์ออกสู่ตลาด โดยใช้ชื่อทางการค้าว่า Intel (R) 4004 ในราคา 200 เหรียญสหรัฐฯ และเรียกชิปนี้ว่าเป็น ไมโครโพรเซสเซอร์ (Micro Processor) ก็เพราะว่า 4004 นี้เป็น CPU (Central Processing Unit) ตัวหนึ่ง ซึ่งมีขนาด 4.2 X 3.2 มิลลิเมตร ภายในประกอบด้วย ทรานซิสเตอร์ จำนวน 2250 ตัว และเป็น ไมโครโพรเซสเซอร์ขนาด 4 บิต หลังจาก 1 ปีต่อมา Intel (R) ได้ออก ไมโครโพรเซสเซอร์ ขนาด 8 บิตออกมาโดยใช้ชื่อว่า 8008 มีชุดคำสั่ง 48 คำสั่ง และอ้างหน่วยความจำได้ 16 Kbyte ซึ่งทาง Intel (R) หวังว่าจะเป็นตัวกระตุ้นตลาดทางด้านชิปหน่วยความจำได้อีกทางหนึ่ง เมื่อปี 1973 ทาง Intel (R) ได้ออก ไมโครโปรเซสเซอร์ 8080 ที่มีชุดคำสั่งพื้นฐาน 74 คำสั่งและสามารถอ้างหน่วยความจำได้ 64 Kbyte

คอมพิวเตอร์เครื่องแรกของไอบีเอ็ม

ในปี 1975 ไอบีเอ็ม ได้ออกเครื่องไมโครคอมพิวเตอร์ เครื่องแรกออกมา แต่ทางไอบีเอ็มได้เรียกเครื่องนี้ว่าเป็น เทอร์มินัลแบบชาญฉลาด ที่สามารถโปรแกรมได้ (Intelligent Programmable Terminal) และตั้งชื่อรุ่นว่า Model 5100 มีหน่วยความจำ 16 Kbyte แล้วยังมีตัวแปลภาษาเบสิก แบบอินเตอร์พรีทเตอร์ (Interpreter) ด้วย และมี ไดรฟ์สำหรับใส่คาร์ทิดจ์เทปในตัว แต่ก็ยังขายไม่ดีเท่าที่ควร เพราะว่าตั้งราคาไว้สูงมากถึง 9,000 เหรียญสหรัฐฯ ในปลายปี 1980 บริษัทไอบีเอ็มได้เกิดแผนกเล็ก ๆ ขึ้นมาแผนกหนึ่งเรียกว่า Entry Systems Division ภายใต้ทีมของคนชื่อว่า ดอน เอสทริดจ์ (Don Estridge) และนักออกแบบอีก 12 คน โดยได้รับมอบหมายให้พัฒนาเครื่องไมโครคอมพิวเตอร์เครื่องแรกของไอบีเอ็มโม เด็ล 5100 นั้นเอง โดยนำเอาจุดเด่นของเครื่อง ที่ขายดีมารวมไว้ในการออกแบบเครื่องไมโครคอมพิวเตอร์ของไอบีเอ็ม และผลิตจำหน่ายได้ภายในปีเดียวภายใต้ชื่อว่า ไอบีเอ็มพีซี (IBM PC) ซึ่งถูกเปิดตัวในเดือน สิหาคม ปี 1981 และยอดขายของเครื่องพีซีก็ได้พุ่งอย่างรวดเร็ว ทำให้บริษัทอื่น ๆ เริ่มจับตามอง

หน่วยประมวลผลกลาง

หน่วยประมวลผลกลาง (central processing unit) หรือที่นิยมเรียกย่อ ๆ ว่า ซีพียู (CPU) เป็นส่วนตีความ และประมวลผล ตามชุดของคำสั่งเครื่องจากซอฟต์แวร์หน่วยประมวลผลเปรียบเสมือนเป็นสมองของคอมพิวเตอร์ ในการทำหน้าที่ตัดสินใจหรือคำนวณ จากคำสั่งที่ได้รับมา เช่น การเปรียบเทียบ การกระทำการทางคณิตศาสตร์ ฯลฯ โดยมีกระบวนการพื้นฐานคือ



  • อ่านชุดคำสั่ง (fetch)
  • ตีความชุดคำสั่ง (decode)
  • ประมวลผลชุดคำสั่ง (execute)
  • อ่านข้อมูลจากหน่วยความจำ (memory)
  • เขียนข้อมูล/ส่งผลการประมวลกลับ (write back)
การทำงานของหน่วยประมวลผลกลาง

การทำงานของหน่วยประมวลผลกลางแบบพื้นฐาน

การทำงานของหน่วยประมวลผลกลางแบ่งออกตามหน้าที่ได้เป็นห้ากลุ่มใหญ่ๆ ดังนี้ โดยทำงานทีละคำสั่ง จากคำสั่งที่เรียงลำดับกันไว้ตอนที่เขียนโปรแกรม

  • Fetch - การอ่านชุดคำสั่งขึ้นมา 1 คำสั่งจากโปรแกรม ในรูปของระหัสเลขฐานสอง (Binary Code from on-off of BIT)
  • Decode - การตีความ 1 คำสั่งนั้นด้วยวงจรถอดรหัส (Decoder circuit) ตามจำนวนหลัก (BIT) ว่ารหัสนี้จะให้วงจรอื่นใดทำงานด้วยข้อมูลที่ใด
  • Execute - การทำงานตาม 1 คำสั่งนั้น คือ วงจรใดในไมโครโปรเซสเซอร์ทำงาน เช่น วงจรบวก วงจรลบ วงจรเปรียบเทียบ วงจรย้ายข้อมูล ฯลฯ
  • Memory - การติดต่อกับหน่วยความจำ การใช้ข้อมูที่อยู่ในหน่วยจำชั่วคราว (RAM, Register) มาใช้ในคำสั่งนั้นโดยอ้างที่อยู่ (Address)
  • Write Back - การเขียนข้อมูลกลับ โดยมีหน่วยจำ Register ช่วยเก็บที่อยู่ของคำสั่งต่อไป ภายหลังมีคำสั่งกระโดดบวกลบที่อยู่

การทำงานแบบขนานในระดับคำสั่ง (ILP)

การทำงานของหน่วยประมวลผลกลางแบบมี pipeline

โดยการทำงานเหล่านี้ถ้าเป็นแบบพื้นฐานก็จะทำงานกันเป็นขั้นตอนเรียงตัวไป เรื่อยๆ แต่ในหลักความเป็นไปได้คือการทำงานในแต่ละส่วนนั้นค่อนข้างจะเป็นอิสระออก จากกัน จึงได้มีการจับแยกกันให้ทำงานขนานกันของแต่ละส่วนไปได้ หลักการนี้เรียกว่า pipeline เป็นการทำการประมวลผลแบบขนานในระดับการไหลของแต่ละคำสั่ง (ILP: Instruction Level Parallelism) โดยข้อมูลที่เป็นผลจากการคำนวณของชุดก่อนหน้าจะถูกส่งกลับไปให้ชุดคำสั่งที่ ตามมาในช่องทางพิเศษภายในหน่วยประมวลผลเอง

การทำงานของหน่วยประมวลผลกลางแบบมี pipeline และเป็น superscalar

การทำงานแบบขนานนี้สามารถทำให้มีความสามารถเพิ่มขึ้นได้อีกคือเพิ่มการทำ งานแต่ละส่วนออกเป็นส่วนที่เหมือนกันในทุกกลุ่มแต่ให้ทำงานคนละสายชุดคำสั่ง กัน วิธีการนี้เรียกว่าการทำหน่วยประมวลผลให้เป็น superscalar วิธีการนี้ทำให้มีหลายๆ ชุดคำสั่งทำงานได้ในขณะเดียวกัน โดยงานหนักของ superscalar อยู่ที่ส่วนดึงชุดคำสั่งออกมา (Dispatcher) เพราะส่วนนี้ต้องตัดสินใจได้ว่าชุดคำสั่งอันไหนสามารถทำการประมวลผลแบบขนาน ได้ หลักการนี้ก็เป็นการทำการประมวลผลแบบขนานในระดับการไหลของแต่ละคำสั่ง (ILP: Instruction Level Parallelism) เช่นกัน

การทำงานแบบขนานในระดับกลุ่มชุดคำสั่ง (TLP)

การทำงานของโปรแกรมคอมพิวเตอร์แต่ละโปรแกรมสามารถแบ่งตัวออกได้เป็นระดับ กลุ่มชุดคำสั่ง (Thread) โดยในแต่ละกลุ่มสามารถทำงานขนานกันได้ (TLP: Thread Level Parallelism)

สถาปัตยกรรมของหน่วยประมวลผลกลางที่เป็นที่รู้จัก

คอมพิวเตอร์แบบฝังตัว

  • สถาปัตยกรรม PowerPC 440 ของไอบีเอ็ม
  • สถาปัตยกรรม 8051 ของอินเทล
  • สถาปัตยกรรม 6800 ของโมโตโรลา
    • ใช้ในหน่วยควบคุม 68HC11 ซึ่งเป็นที่แพร่หลายอย่างมาก
  • สถาปัตยกรรม ARM ของ ARM (เคยเป็นส่วนหนึ่งของบริษัท Acorn Computers)
    • ใช้ใน เครื่องเล่นเพลง ไอพ็อด, เครื่องเล่นเกม เกมบอยแอดวานซ์, และ พีดีเอ จำนวนมาก 0
    • หน่วยประมวลผล XScale และ StrongARM ของอินเทลนั้น ใช้สถาปัตยกรรม ARM

เครื่องคอมพิวเตอร์ส่วนบุคคล

  • สถาปัตยกรรม x86 ของอินเทล
  • สถาปัตยกรรม 6800, 6809, และ 68000 ของโมโตโรลา
  • สถาปัตยกรรม 6502 ของ MOS Technology
  • สถาปัตยกรรม Z80 ของ Zilog
  • สถาปัตยกรรม PowerPC ของไอบีเอ็ม (ในภายหลังคือพันธมิตร AIM alliance)
  • สถาปัตยกรรม AMD64 (หรือ x86-64) ของเอเอ็มดี
    • เข้ากันได้กับสถาปัตยกรรมแบบ x86 ของอินเทล

คอมพิวเตอร์เซิร์ฟเวอร์ และเวิร์คสเตชัน

มินิคอมพิวเตอร์จนถึงเมนเฟรม

แรม หรือ หน่วยความจำ

แรม (RAM: Random Access Memory หน่วยความจำเข้าถึงโดยสุ่ม หรือหน่วยความจำชั่วคราว) เป็นหน่วยความจำหลัก ที่ใช้ในระบบคอมพิวเตอร์ยุค ปัจจุบัน หน่วยความจำชนิดนี้ อนุญาตให้เขียนและอ่านข้อมูลได้ในตำแหน่งต่างๆ อย่างอิสระ และรวดเร็วพอสมควร ซึ่งต่างจากสื่อเก็บข้อมูลชนิดอื่นๆ อย่างเทปหรือดิสก์ที่มีข้อจำกัดในการอ่า นและเขียนข้อมูล ที่ต้องทำตามลำดับก่อนหลังตามที่จัดเก็บไว้ในสื่อ หรือมีข้อกำจัดแบบรอม ที่อนุญาตให้อ่านเพียงอย่างเดียวข้อมูลในแรม อาจเป็น โปรแกรมที่กำลังทำงาน หรือข้อมูลที่ใช้ในการประมวลผล ของโปรแกรมที่กำลังทำงานอยู่ ข้อมูลในแรมจะหายไปทันที เมื่อระบบคอมพิวเตอร์ถูกปิดลง เนื่องจากหน่วยความจำชนิดนี้ จะเก็บข้อมูลได้เฉพาะเวลาที่มีกระแสไฟฟ้าหล่อเลี้ยงเท่านั้น

ประวัติ

เครื่องคอมพิวเตอร์ใช้แรมในการเก็บโปรแกรมและข้อมูลระหว่างการประมวลผล คุณสมบัติที่สำคัญประการหนึ่งของแรมคือความเร็วที่ใช้เข้าหนึ่งตำแหน่งต่างๆ ในหน่วยความจำมีค่าเท่าๆ กัน ซึ่งต่างจากเทคโนโลยีอื่นบางอย่างซึ่งต้องใช้เวลารอกว่าที่บิตหรือไบต์จะมาถึงระบบแรกๆ ที่ใช้หลอดสุญญากาศทำงานคล้ายกับแรมในสมัยปัจจุบันถึงแม้ว่าอุปกรณ์จะเสียบ่อยกว่ามาก หน่วยความจำแบบแกนเฟอร์ไรต์(core memory) ก็มีคุณสมบัติในการเข้าถึงข้อมูลแบบเดียวกัน แนวความคิดของหน่วยความจำที่ทำจากหลอดและแกนเฟอร์ไรต์ก็ยังใช้ในแรมสมัยใหม่ ที่ทำจากวงจรรวมน่วยความจำหลักแบบอื่นมักเกี่ยวข้องกับอุปกรณ์ที่มีเวลาเข้าถึงข้อมูล ไม่เท่ากัน เช่น หน่วยความจำแบบดีเลย์ไลน์ (delay line memory) ที่ใช้คลื่นเสียงในท่อบรรจุปรอทในการเก็บข้อมูลบิต หน่วยความจำแบบดรัม ซึ่งทำงานใกล้เคียงฮาร์ดดิสก์ในปัจจุบัน เป็นข้อมูลในรูปของแม่เหล็กในแถบแม่เหล็กรูปวงกลม

แรมหลายชนิดมีคุณสมบัติ volatile หมายถึงข้อมูลที่เก็บจะสูญหายไปถ้าปิดเครื่องคอมพิวเตอร์ แรมสมัยใหม่มักเก็บข้อมูลบิตในรูปของประจุไฟฟ้าในตัวเก็บประจุ ดังเช่นกรณี ไดนามิคแรม หรือในรูปสถานะของฟลิปฟล็อป ดังเช่นของ สแตติกแรม

ปัจจุบันมีการพัฒนาแรมแบบ non-volatile ซึ่งยังเก็บรักษาข้อมูลถึงแม้ว่าไม่มีไฟเลี้ยงก็ตาม เทคโนโลยีที่ใช้ ก็เช่น เทคโนโลยีนาโนทิวจากคาร์บอน (carbon nanotube) และ ปรากฏการณ์ magnetic tunnel

ในฤดูร้อนปี พ.ศ. 2546 มีการเปิดตัวแรมแบบแม่เหล็ก (Magnetic RAM, MRAM) ขนาด 128 Kib ซึ่งผลิตด้วยเทคโนโลยีระดับ 0.18 ไมครอน หัวใจของแรมแบบนี้มาจากปรากฏการณ์ magnetic tunnel ในเดือนมิถุนายน พ.ศ. 2547 บริษัท อินฟินิออน (Infineon) เปิดตัวต้นแบบขนาด 16 Mib อาศัยเทคโนโลยี 0.18 ไมครอนเช่นเดียวกัน

สำหรับหน่วยความจำจากคอร์บอนนาโนทิว บริษัท แนนเทโร (Nantero) ได้สร้างต้นแบบขนาน 10 GiB ในปี พ.ศ. 2547

ในเครื่องคอมพิวเตอร์ สามารถจองแรมบางส่วนเป็นพาร์ติชัน ทำให้ทำงานได้เหมือนฮาร์ดดิสก์แต่เร็วกว่ามาก มักเรียกว่า แรมดิสค์ (ramdisk)

ประเภทของแรม

  • SRAM (Static RAM)
  • NV-RAM (Non-volatile RAM)
  • DRAM (Dynamic RAM)
  • Dual-ported RAM
  • SDRAM

รูปแบบของโมดูลแรม

แรมสารกิ่งตัวนำมักผลิตในรูปของวงจรรวมหรือไอซี ไอซีมักจะนำมาประกอบในรูปของโมดูลสำหรับเสียบ มาตรฐานโมดูลแบบต่างๆ ได้แก่
  • Single in-line Pin Package (SIPP)
  • Dual in-line Package (DIP)
  • Single in-line memory module (SIMM)
  • Dual in-line memory module (DIMM)
  • โมดูลแรมของบริษัท แรมบัส (Rambus) จริงๆ แล้วคือ DIMM แต่มักเรียกว่า RIMM เนื่องจากสล็อตที่เสียบแตกต่างจากแบบอื่น
  • Small outline DIMM (SO-DIMM) เป็น DIMM ที่มีขนาดเล็ก ใช้กับเครื่องคอมพิวเตอร์แล็บท็อป มีรุ่นขนาด 72 (32 บิต), 144 (64 บิต), 200 (72 บิต) พิน
  • Small outline RIMM (SO-RIMM)

ฮาร์ดดิสก์

ฮาร์ดดิสก์ ( hard disk) หรือ จานบันทึกแบบแข็ง (ศัพท์บัญญัติ) คือ อุปกรณ์คอมพิวเตอร์ที่บรรจุข้อมูลแบบไม่ลบเลือน มีลักษณะเป็นจานโลหะที่เคลือบด้วยสารแม่เหล็กซึ่งหมุนอย่างรวดเร็วเมื่อทำงาน การติดตั้งเข้ากับตัวคอมพิวเตอร์สามารถทำได้ผ่านการต่อเข้ากับมาเธอร์บอร์ด (motherboard) ที่มีอินเตอร์เฟซแบบขนาน (PATA) , แบบอนุกรม (SATA) และแบบเล็ก (SCSI) ทั้งยังสามารถต่อเข้าเครื่องจากภายนอกได้ผ่านทางสายยูเอสบี, สายไฟร์ไวร์ของ บริษัท Apple ที่เป็นที่รู้จักน้อยกว่า รวมไปถึงอินเตอร์เฟซอนุกรมแบบต่อนอก (eSATA) ซึ่งทำให้การใช้ฮาร์ดดิสก์ทำได้สะดวกยิ่งขึ้นเมื่อไม่มีคอมพิวเตอร์ถาวรเป็น ของตนเองโดยในปี 2008 ได้มีการพัฒนาเป็น Hybrid drive และ SSD

ประวัติ

ฮาร์ดดิสก์ที่มีกลไกแบบปัจจุบันถูกประดิษฐ์ขึ้นเมื่อ พ.ศ. 2499 (1956) โดยนักประดิษฐ์ยุคบุกเบิกแห่งบริษัทไอบีเอ็ม เรย์โนล์ด จอห์นสัน ซึ่งในขณะนั้น ฮาร์ดดิสก์มีขนาดค่อนข้างใหญ่ มีเส้นผ่าศูนย์กลางถึง 20 นิ้ว มีความจุเพียงระดับเมกะไบต์เท่านั้น «โดยใช้หน่วยการเปรียบเทียบเป็น บระดับจิกะไบต์ในปัจจุบัน ซึ่ง 1,024MB = 1GB» ในตอนแรกใช้ชื่อเรียกว่า 'ฟิกส์ดิสก์ fixed disk หรือจานบันทึกที่ติดอยู่กับที่ ในบริษัท IBM เรียกว่า วินเชสเตอร์ส Winchesters

ต่อมาภายหลังจึงเรียกว่า ฮาร์ดดิสก์ จานบันทึกแบบแข็ง เพื่อจำแนกประเภทออกจาก ฟลอปปี้ดิสก์ จานบันทึกแบบอ่อน

ตั้งแต่เข้าสู่ช่วงคริสต์ศตวรรษที่ 21 เป็นต้นมา ฮาร์ดดิสก์สามารถพบได้ในอุปกรณ์อิเล็กทรอนิกส์ทั่วไป ไม่เฉพาะภายในคอมพิวเตอร์ทุกเครื่องเท่านั้น แต่ยังรวมไปถึงอุปกรณ์อิเล็กทรอนิกส์อื่นๆ อีกด้วย เช่น เครื่องเล่นเอ็มพีทรี, เครื่องบันทึกภาพดิจิทัล, กล้องถ่ายรูป, คอมพิวเตอร์ขนาดพกพา PDA จนกระทั่งภายใน โทรศัพท์มือถือ บางรุ่นตั้งแต่ภายในปี พ.ศ. 2548 เป็นต้นมาเช่นยี่ห้อ (โนเกีย และ ซัมซุง สองบริษัทผู้ผลิตโทรศัพท์มือถือรายแรกที่จำหน่ายโทรศัพท์มือถือที่มีฮาร์ดดิสก์

ขนาดและความจุ


แนวโน้มในการเพิ่มขึ้นของการพัฒนาฮาร์ดดิสก์

ความจุของฮาร์ดดิสก์โดยทั่วไปในปัจจุบันนั้นมีตั้งแต่ 20 จิกะไบต์ ถึง 1.5 เทระไบต์

  • ขนาดความหนา 8 inch: 9.5 นิ้ว× 4.624 นิ้ว× 14.25 นิ้ว(241.3 มิลลิเมตร× 117.5 มิลลิเมตร× 362 มิลลิเมตร)
  • ขนาดความหนา 5.25 inch: 5.75 นิ้ว× 1.63 นิ้ว× 8 นิ้ว(146.1 มิลลิเมตร× 41.4 มิลลิเมตร× 203 มิลลิเมตร)

ขนาดฮาร์ดดิสในอดีต

รุ่นและขนาดฮาร์ดดิสตั้งแต่ 8″ 5.25″ 3.5″ 2.5″ 1.8″ และ 1″

ปัจจุบันภายในปี 2551 มีประเภทของฮาร์ดดิสก์ต่อไปนี้

  • ขนาดความหนาขนาดความหนา 3.5 นิ้ว = 4 นิ้ว× 1 นิ้ว× 5.75 นิ้ว(101.6 มิลลิเมตร× 25.4 มิลลิเมตร× 146 มิลลิเมตร) = 376.77344cm³

เป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์ตั้งโต๊ะ Desktop PC หรือคอมพิวเตอร์ขนาดใหญ่ Server ความเร็วในการหมุนจาน 10,000 7,200 5,400 RPM ตามลำดับ โดยมีความจุในปัจจุบันตั้งแต่ 80 GB ถึง 1 TB

  • ขนาดความหนา 2.5 = 2.75 in × 0.374–0.59 นิ้ว× 3.945 นิ้ว(69.85 มิลลิเมตร× 9.5–15 มิลลิเมตร× 100 มิลลิเมตร) = 66.3575cm³-104.775cm³

นิ้วเป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์พกพา Notebook , Laptop ,UMPC,Netbook, อุปกรณ์มัลติมีเดียพกพา ความเร็วในการหมุนจาน 5,400 RPM โดยมีความจุในปัจจุบันตั้งแต่ 60 GB ถึง 320 GB

  • ขนาดความหนา1.8 นิ้ว: 54 มิลลิเมตร× 8 มิลลิเมตร× 71 มิลลิเมตร= 30.672cm³
  • ขนาดความหนา1 นิ้ว: 42.8 มิลลิเมตร× 5 มิลลิเมตร× 36.4 มิลลิเมตร
  • ขนาดความหนา0.85 นิ้ว: 24 มิลลิเมตร× 5 มิลลิเมตร× 32 มิลลิเมตร

ยิ่งมีความจุมาก ก็จะยิ่งทำให้การทำงานมีประสิทธิภาพมากขึ้น โดยความต้องการของตลาดในปัจจุบันที่ต้องการแหล่งเก็บข้อมูลที่มีความจุใน ปริมาณมาก มีความน่าเชื่อถือในด้านการรักษาความปลอดภัยของข้อมูล และไม่จำเป็นต้องต่อเข้ากับอุปกรณ์ที่ใหญ่กว่าอันใดอันหนึ่งได้นำไปสู่ ฮาร์ดดิสก์รูปแบบใหม่ต่างๆ เช่นกลุ่มจานบันทึกข้อมูลอิสระประกอบจำนวนมากที่เรียกว่าเทคโนโลยี RAID รวมไปถึงฮาร์ดดิสก์ที่มีลักษณะเชื่อมต่อกันเป็นเครือข่าย เพื่อที่ผู้ใช้จะได้สามารถเข้าถึงข้อมูลในปริมาณมากได้ เช่นฮาร์ดแวร์ NAS network attached storage เป็นการนำฮาร์ดดิสก์มาทำเป็นเครื่อข่ายส่วนตัว และระบบ SAN storage area network เป็นการนำฮาร์ดดิสก์มาเป็นพื้นที่ส่วนกลางในการเก็บข้อมูล

หลักการทำงานของฮาร์ดดิสก์


ภายในฮาร์ดิสก์
  • หลักการบันทึกข้อมูลลงบนฮาร์ดดิสก์ไม่ได้แตกต่างจากการบันทึกลงบนเทปคาส เซ็ทเลย เพราะทั้งคู่ต้องใช้สารบันทึกคือสารแม่เหล็กเหมือนกัน สารแม่เหล็กนี้สามารถลบหรือเขียนได้ใหม่อยู่ตลอดเวลา โดยเมื่อบันทึกหรือเขียนไปแล้ว มันสามารถจำรูปแบบเดิมได้เป็นเวลาหลายปี ความแตกต่างระหว่างเทปคาสเซ็ทกับฮาร์ดดิสก์มีดังนี้
    • สารแม่เหล็กในเทปคาสเซ็ท ถูกเคลือบอยู่บนแผ่นพลาสติกขนาดเล็ก เป็นแถบยาว แต่ในฮาร์ดดิสก์ สารแม่เหล็กนี้ จะถูกเคลือบอยู่บนแผ่นแก้ว หรือแผ่นอะลูมิเนียมที่มีความเรียบมากจนเหมือนกับกระจก
    • สำหรับเทปคาสเซ็ท ถ้าคุณต้องการเข้าถึงข้อมูลในบริเวณใดบริเวณหนึ่ง ก็จะต้องเลื่อนแผ่นเทปไปที่หัวอ่าน โดยการกรอเทป ซึ่งต้องใช้เวลาหลายนาที ถ้าเทปมีความยาวมาก แต่สำหรับฮาร์ดดิสก์ หัวอ่านสามารถเคลื่อนตัวไปหาตำแหน่งที่ต้องการในเกือบจะทันที
    • แผ่นเทปจะเคลื่อนที่ผ่านหัวอ่านเทปด้วยความเร็ว 2 นิ้วต่อวินาที (5.08 เซนติเมตรต่อวินาที) แต่สำหรับหัวอ่านของฮาร์ดดิสก์ จะวิ่งอยู่บนแผ่นบันทึกข้อมูล ที่ความเร็วในการหมุนถึง 3000 นิ้วต่อวินาที (ประมาณ 170 ไมล์ต่อชั่วโมง หรือ 270 กิโลเมตรต่อชั่วโมง)
    • ข้อมูลในฮาร์ดดิสก์เก็บอยู่ในรูปของโดเมนแม่เหล็ก ที่มีขนาดเล็กมากๆ เมื่อเทียบกับโดเมนของเทปแม่เหล็ก ขนาดของโดเมนนี้ยิ่งมีขนาดเล็กเท่าไร ความจุของฮาร์ดดิสก์จะยิ่งมีขนาดเพิ่มขึ้นเท่านั้น และสามารถเข้าถึงข้อมูลได้ในเวลาสั้น
  • เครื่องคอมพิวเตอร์ตั้งโต๊ะปัจจุบันจะมีความจุของฮาร์ดดิสก์ประมาณ 60 ถึง 200 จิกะไบต์ ข้อมูลที่เก็บลงในฮาร์ดดิสก์ เก็บอยู่ในรูปของไฟล์ ซึ่งประกอบด้วยข้อมูลที่เรียกว่า ไบต์ : ไบต์คือ รหัส แอสกี้ ที่แสดงออกไปตัวอักษร รูปภาพ วีดีโอ และเสียง โดยที่ไบต์จำนวนมากมาย รวมกันเป็นคำสั่ง หรือโปรแกรมทางคอมพิวเตอร์ มีหัวอ่านของฮาร์ดดิสก์อ่านข้อมูลเหล่านี้ และนำข้อมูลออกมา ผ่านไปยังตัวประมวลผล เพื่อคำนวณและแปรผลต่อไป
  • เราสามารถคิดประสิทธิภาพของฮาร์ดดิสก์ได้ 2 ทางคือ
    • อัตราการไหลของข้อมูล (Data rate) คือจำนวนไบต์ต่อวินาที ที่หัวอ่านของฮาร์ดดิสก์สามารถจะส่งไปให้กับซีพียูหรือตัวประมวลผล ซึ่งปกติมีอัตราประมาณ 5 ถึง 40 เมกะไบต์ต่อวินาที
    • เวลาค้นหา (Seek time) เวลาที่ข้อมูลถูกส่งไปให้กับซีพียู โดยปกติประมาณ 10 ถึง 20 มิลลิวินาที

การเก็บข้อมูล


การเก็บข้อมูลบนฮาร์ดดิสก์

ข้อมูลที่เก็บลงในฮาร์ดดิสก์จะอยู่บนเซกเตอร์และแทร็ก แทร็กเป็นรูปวงกลม ส่วนเซกเตอร์เป็นเสี้ยวหนึ่งของวงกลม อยู่ภายในแทร็กดังรูป แทร็กแสดงด้วยสีเหลือง ส่วนเซกเตอร์แสดงด้วยสีแดง ภายในเซกเตอร์จะมีจำนวนไบต์คงที่ ยกตัวอย่างเช่น 256 ถึง 512 ขึ้นอยู่กับว่าระบบปฏิบัติการของคอมพิวเตอร์จะจัดการแบ่งในลักษณะใด เซกเตอร์หลายๆ เซกเตอร์รวมกันเรียกว่า คลัสเตอร์ (Clusters) ขั้นตอน ฟอร์แมต ที่เรียกว่า การฟอร์แมตระดับต่ำ (Low -level format ) เป็นการสร้างแทร็กและเซกเตอร์ใหม่ ส่วนการฟอร์แมตระดับสูง (High-level format) ไม่ได้ไปยุ่งกับแทร็กหรือเซกเตอร์ แต่เป็นการเขียน FAT ซึ่งเป็นการเตรียมดิสก์เพื่อที่เก็บข้อมูลเท่านั้น